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Abstract. Most compiler correctness efforts, whether based on validation or once-and-for-all verifi-
cation, are tightly tied to the particular language(s) under consideration. Proof techniques may be
replicated for other targets, and parts of the compiler chain may be shared for new input or output
languages, but the extent to which common elements can be generalized across multiple targets has
not been fully explored. In this paper, we lay out a general approach to specifying and verifying op-
timizations and transformations on low-level intermediate languages. By generalizing across elements
such as concurrent memory models and single-thread operational semantics, we can build a library of
facts that can be reused in verifying optimizations for dramatically different target languages, such as
stack-machine and register-machine languages.
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1 Introduction

Program verification relies fundamentally on compiler correctness. Static analyses for safety or correctness
in compiled languages depend implicitly on the fidelity of the compiler to some abstract semantics for the
language, but real-world compilers rarely reflect these theoretical semantics [23]. The optimization phase of
compilation is particularly error-prone: optimizations are often stated as complex algorithms on program
code, with only informal justifications of correctness based on an intuitive understanding of program seman-
tics. Formal methods researchers have devoted considerable effort to verifying these optimizations, either on
a program-by-program basis (the translation validation approach [17]), or by general proof of correctness for
all possible inputs (the approach taken, for instance, in the CompCert verified C compiler [10]). As Morisset
et al. [16] have shown, the problem is only aggravated when dealing with optimization of parallel programs,
a rapidly developing field in which many algorithms are still poorly understood. Insufficiently analyzed op-
timizations may result in unreliable execution of parallel code; compiler writers may even end up having to
limit the scope and complexity of the optimizations they develop, in the absence of a method to demonstrate
the safety of parallel optimizations.

CompCert has demonstrated that it is possible to verify every phase of a compiler once and for all. How-
ever, CompCert is ultimately only one compiler, albeit with several different source and target languages. The
goal of the VeriF-OPT project is to develop basic theories and methodologies that will facilitate the devel-
opment of new CompCert-like projects, by providing a language-independent framework for specifying and
verifying compiler optimizations. In this paper, we present a domain-specific, formal, and target-independent
language for specifying compiler optimizations, and demonstrate its use in verifying an optimization across
multiple targets and memory models. We will see that the use of a unified framework for multiple target lan-
guages allows us to generalize much of the proof effort and reuse proof components, simplifying the process
of verifying each individual optimization.



2 The PTRANS Specification Language

2.1 PTRANS: Adapting TRANS to Parallel Programs

The core of our approach is the PTRANS specification language, an extension of the TRANS language [5]
designed with concurrency-awareness and language-independence as first principles. The basic approach is
drawn from the work of Lacey et al. [7]: the transformation to be made is specified as a rewrite on program
code in the form of a control flow graph (CFG), and the conditions under which the optimization may
be applied are expressed in terms of temporal logic. Our starting point is our previous formalization of
the syntax and semantics of TRANS for sequential programs [13]. The syntax of PTRANS is given by the
following grammar:

A ::= add edge(n,m, `) | remove edge(n,m, `) | split edge(n,m, `, p)
| replace n with p1, ..., pm

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | A ϕ U ϕ | E ϕ U ϕ | A ϕ B ϕ | E ϕ B ϕ | ∃x. ϕ
T ::= A1, ..., Am if ϕ | MATCH ϕ IN T | T THEN T | T � T | APPLY ALL T

The atomic actions A include add edge and remove edge, which add and remove (`-labeled) edges between the
specified nodes; split edge, which splits an edge between two nodes, inserting a new node between them; and
replace, which replaces the instruction at a given node with a sequence of instructions, adding new nodes to
contain the instructions if necessary. The arguments to the atomic actions represent nodes and instructions
in the program graph, but may contain metavariables that are instantiated to program objects when the
rewrites are applied. Kalvala et al. have shown that a wide variety of common program transformations can
be expressed using these basic rewrites

At the top level, a transformation T is built out of conditional rewrites combined with strategies. The
expression A1, ..., Am if ϕ is the basic pairing of one or more rewrites with a CTL side condition. MATCH
ϕ IN T provides an additional side condition for a set of transformations, and allows metavariables to be
bound across multiple rewrites. The THEN and � operators provide sequencing and choice respectively, and
APPLY ALL T recursively applies T wherever possible until it is no longer applicable to the graph under
consideration.

The primary aim of the PTRANS framework is to serve as a language-independent platform for the verifi-
cation of new compiler optimizations and transformations. Wherever possible, its definition is parameterized
by the details of the target language. Rather than incorporate language structure or expected transformation
patterns into the framework, we leave such elements unspecified except for a minimal set of axioms. We
have already seen one parameter provided by the target language: the language of instruction labels with
metavariables. In Section 3 we will introduce two sample instantiations of the language parameter, which
themselves take memory models as parameters, and in Section 6 we will verify optimizations within the
context of these instantiations.

The TRANS approach depends fundamentally on a notion of control flow graph (CFG). The atomic
rewrites are rewrites on CFGs, and the CTL side conditions are evaluated on paths through CFGs. Thus,
we require a parallel analogue to the CFG in order to extend the approach to parallel programs. The model
used here, adapted from the work of Krinke [6], is the threaded control flow graph (tCFG): a collection of
non-intersecting CFGs, one for each thread in a program. Formally:

Definition 1. A CFG is a labeled directed graph (N,E,Start ,Exit , L) where N is a set of nodes, E ⊆
N × T × N is a set of T -labeled edges (where T is given by the target language, but must contain the label
seq), Start ,Exit ∈ N are the distinguished Start and Exit nodes of the graph, and L : N → I assigns a
program instruction to each node, such that: Start has no incoming edges, Exit has no outgoing edges, and
the outgoing edges of each node except Exit correspond properly to the instruction label at that node, where
the required correspondence is determined by the target language. A tCFG is a collection of disjoint CFGs,
one for each thread in the program being represented. If G is a tCFG and t is a thread, we write Gt for the
CFG of t in G.
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The revised semantics of TRANS rewrites [13] can be straightforwardly extended to tCFGs: since indi-
vidual CFGs do not intersect, the nodes mentioned in each atomic action uniquely identify (at most) one
thread on which to perform the rewrite. If nodes from several different threads are mentioned in a single
atomic action, the rewrite fails to apply, as in the case where the nodes mentioned do not exist in the graph.

The set of atomic predicates used in side conditions may depend on the target language under consider-
ation; we give a set of basic atomic predicates that are likely to be useful in any target language, and allow
languages to provide their own additional predicates as well. Atomic predicates break down into two types:
those that depend on the state (i.e., the vector of program points in a tCFG) in which they are evaluated,
and those that check some global property of the tCFG under consideration. State-based predicates include:

– nodet(n), which is true of a state q when qt = n.
– stmtt(i), which is true of a state q when the instruction at q is i in Gt.
– outt(ty , n

′), which is true of a state q when qt has an outgoing edge to n′ with label ty in Gt.

State-independent predicates include:

– is(x, y), which is true when the metavariables x and y represent the same program object (number, node,
instruction, etc.).

– int eq(a, b), which is true when a and b are arithmetic expressions that statically evaluate to the same
value (according to some reference semantics for arithmetic operations).

Note that all of these predicates are purely syntactic static properties of tCFGs. In general, PTRANS
optimizations can be stated and performed independently of the semantics of the target language, so that
PTRANS may serve as a design tool even in the absence of formal semantics for the target language. Of
course, semantics will be required to reason about the correctness of optimizations. We may also want to
rely on the results of external analyses whose correctness depends on the program semantics; we will explore
this idea in more detail in Section 5.

3 Intermediate Languages for PTRANS

Control flow graphs are most commonly used as a code representation for compiler intermediate languages,
and particularly for those in which each instruction is in some sense a single unit of computation. In this
section, we will describe two such languages used as targets for PTRANS optimization. The first, MiniLLVM,
is a register-machine language, in which an instruction consists of an operator together with several operands
(constants, variables, or simple expressions) and intermediate results are stored in local registers. The second,
GraphBIL, takes the contrasting stack-machine approach, in which intermediate results are stored in and
operands drawn from a stack of computed values. For each language, we will present the syntax of CFG
node labels (i.e., instructions) for the language and give a small-step transition semantics that shows how
each node is executed.

3.1 MiniLLVM

Our first target language is MiniLLVM, a language based on the LLVM intermediate representation [8].
We omit labels from our instructions, since the targets of jumps can be determined from the control flow
graph. We also omit several formal details of the IR: for instance, while types are included in the syntax, we
perform very little dynamic type checking, and while the LLVM IR is always in static single assignment form,
MiniLLVM programs are not in SSA by default. This simplifies the formalization and reduces the number of
well-formedness constraints that need to be carried through proofs of correctness. The syntax of MiniLLVM
instructions is defined as follows:

expr ::= %x | @x | c type ::= int | type∗
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instr ::= %x = op type expr , expr | %x = icmp cmp type expr ,expr | br expr | br |
%x = call type (expr , ..., expr) | return expr | alloca %x type | %x = load type∗ expr |
store type expr , type∗ expr | %x = cmpxchg type∗ expr , type expr , type expr | is pointer expr

The one instruction not present in the LLVM IR is is pointer, which checks whether a given expression
is pointer-valued but otherwise does nothing; we will use this as a replacement for eliminated memory
operations in our optimization. (Note that the *’s indicate not repetition but pointer types.)

A CFG structure labeled with MiniLLVM instructions is only a well-formed CFG if a certain relationship
holds between the label on each node and the outgoing edges of that node. This relationship is defined as
follows:

– A node labeled with a conditional branch br e, has one outgoing edge labeled true and one labeled false.

– A node labeled with function call call ty (e1, ..., en) has one outgoing edge labeled call (leading to the
function body) and one labeled seq (indicating the location to which to return once the call is complete).

– A node labeled with a return instruction return e can have any number of outgoing edges, all labeled
ret.

– A node with any other label has one outgoing edge labeled seq.

We give semantics to the language by specifying a labeled transition relation on program configura-
tions. The semantics of an individual thread are given by the transition relation t, G,m ` (n, env , st , al)

a→
(n′, env ′, st ′, al ′) where G is the CFG representing the thread, t is the thread name, m is the shared memory,
n is a node in G, env is an environment giving values for thread-local variables, st is the call stack for the
thread, al is a record of the memory locations allocated by the thread, and a is the set of memory operations
performed by the thread. Memory operations are chosen from:

a ::= read t loc v | write t loc v | arw t loc v v | alloc t loc | free t loc

where arw represents an atomic read-and-write operation (as performed by the cmpxchg instruction). The
semantics are parameterized by a memory model that provides functions can read, free set, and update mem
for interacting with the shared memory (as explained in detail in Section 4). Several of the semantic rules
for MiniLLVM instructions are shown in Figure 1. In the figure, Label G n indicates the instruction label
assigned to node n in the CFG G, and next ` n indicates the node reached along an outgoing `-labeled edge
from n. We proceed through the graph G by looking up the instruction label at the current node, performing
some transformation on the thread-local state and producing some memory operations, and moving on to
another node as indicated by the edges of G.

Label G n = (%x = op ty e1, e2) n 6= Exit G (e1 op e2, env) ⇓ v

t,G,m ` (n, env , st , al)→ (next seq n, env(x 7→ v), st , al)

Label G n = (alloca %x ty) n 6= Exit G loc ∈ free set m

t,G,m ` (n, env , st , al)
alloc t loc−−−−−−→ (next seq n, env(x 7→ loc), st , al ∪ {loc})

Label G n = (store ty1 e1, ty2
∗ e2) n 6= Exit G (e1, env) ⇓ v (e2, env) ⇓ loc

t, G,m ` (n, env , st , al)
write t loc v−−−−−−−→ (next seq n, env , st , al)

Label G n = (is pointer e) n 6= Exit G (e, env) ⇓ loc

t, G,m ` (n, env , st , al)→ (next seq n, env , st , al)

Fig. 1. Some single-thread transition rules for MiniLLVM
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A concurrent configuration is a vector of thread-local configurations, one for each thread, paired with a
shared memory. The concurrent semantics of MiniLLVM is given by a single rule:

t,Gt,m ` statest
a→ (n′, env ′, st ′, al ′) update mem m a m ′

(states,m)→ (states(t 7→ (n′, env ′, st ′, al ′)),m ′)

In other words, we produce a concurrent step simply by selecting one thread in the tCFG G to take a step,
and then updating the memory with the memory operation (if any) performed by that thread. As we will
see in the next section, once we have single-thread CFG semantics for a language, a rule of this form can be
given to produce concurrent semantics without any specific reference to the language under consideration.

3.2 GraphBIL

Our second target language, GraphBIL, is adapted from Gordon and Syme’s Baby IL (BIL) [2]. BIL is
itself a simple subset of the Common Intermediate Language (CIL) [1], which is used as an intermediate
representation for the compilers of the .NET Framework. As before, we define a set of instructions for use
as node labels on CFGs; except for the language of instructions and the relationship between node labels
and outgoing edges, the CFGs of GraphBIL are identical to those of MiniLLVM. The syntax of GraphBIL
instructions is defined as follows:

instr ::= ldc.i4 int | br | brtrue | brfalse | ldind | stind | ldarga int | starg int |
newobj void class:: .ctor(type, ..., type) | callvirt type class::method(type, ..., type) |
call instance type class::method(type, ..., type) | ret | ldflda type class::field |
box class | unbox class | dup | pop | pop pointer

Most of the instructions are straightforwardly derived from BIL, with arguments drawn from the evaluation
stack rather than explicit in the instructions; we provide several lower-level instructions from CIL, such
as br and ret, to reflect our lower-level program model. We also add three instructions that are useful in
optimizing stack machine programs: dup duplicates the top element of the evaluation stack, pop removes the
top element, and pop pointer emulates the behavior of a stind instruction without actually performing a
store (i.e., it removes the top two values from the stack after checking that the second is a pointer).

The allowed outgoing edge types for each GraphBIL instruction are as follows:

– A node labeled with a conditional branch brtrue or brfalse has one outgoing edge labeled true and
one labeled false.

– A node that calls a method of an unboxed object call instance (B vc :: `(A1, ..., An)) has one outgoing
edge labeled call vc (leading to the method body) and one labeled seq (indicating the location to which
to return once the call is complete).

– A node that calls a method of a boxed object callvirt (B c :: `(A1, ..., An)) has one outgoing edge
labeled seq (indicating the location to which to return once the call is complete), and one edge labeled
mcall c′ for each class c′ such that c′ <: c.

– A node labeled with a return instruction return e can have any number of outgoing edges, all labeled
seq.

– A node with any other label has one outgoing edge labeled seq.

Of particular interest is the requirement for the callvirt instruction, which ensures that a virtual method
call can be dynamically dispatched to any subclass of the class given in the instruction.

The semantics of GraphBIL are derived systematically from those of BIL, making several elements of the
CIL execution state explicit: in particular, the evaluation stack (on which operands to future instructions
are placed), the program point, and the distinction between thread-local state and shared memory. We also
flatten out the structure of the heap: while in BIL field references can be attached to either stack or heap
pointers, in GraphBIL we resolve field references in the heap to unstructured locations. For simplicity, we
restrict the stind instruction to store only to heap addresses, and use starg to store to the argument vectors
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Label G n = brtrue n 6= Exit G e = if v = 0 then seq else branch

t, G, h ` (s, vs, args, n)→ (s, vs, args, next G e n)

Label G n = stind n 6= Exit G

t,G, h ` (s, vs; p; v, args, n)
write t p v−−−−−→ (s, vs, args, next G seq n)

Label G n = starg j n 6= Exit G s = s1 ... si
stack update(s, args, (i + 1, j), v) = (s, args ′)

t, G, h ` (s, vs; v, args, n)→ (s, vs, args ′, next G seq n)

Label G n = newobj void c:: .ctor(A1, ..., Ak) n 6= Exit G c 6∈ ValueClass p ∈ free set h
fields(c) = fi 7→ Ai

i∈1..n

t, G, h ` (s, vs; v1; ...; vk, args, n)
write t p c[fi 7→vi

i∈1..n]−−−−−−−−−−−−−−→ (s, vs; p, args, next G seq n)

Label G n = callvirt B c::`(A1, ..., Ak) n 6= Exit G c′[fi 7→ ui
i∈1..n] ∈ can read t p c′ <: c

t,G, h ` (s, vs; p; v1; ...; vk, args, n)
read t p c′[fi 7→ui

i∈1..n]−−−−−−−−−−−−−−→ (s; (vs, args, n), ·, .args(p, v1, ..., vk), next G (mcall c′) n)

Fig. 2. Some single-thread transition rules for GraphBIL

in the call stack. As in MiniLLVM, at each step we look up the instruction at the current node, perform some
modification to the local state and/or produce some memory operations, and then move along an outgoing
edge to a new node.

The concurrent semantics of GraphBIL are generated from the single-thread semantics as in MiniLLVM,
with a concurrent state a pair of per-thread local state and a single shared memory:

t,Gt,m ` statest
a→ (s′, vs ′, args ′, n′) update mem m a m ′

(states,m)→ (states(t 7→ (s′, vs ′, args ′, n′)),m ′)

4 Specifying Memory Models

In order to complete our language definitions, we must instantiate them with concurrent memory models.
A concurrent memory model provides an answer to the question, “what are the values that a memory read
operation can read?” Almost every processor architecture has its own answer to this question, and many have
more than one. Adding to the confusion, many of these models, including the one specified for LLVM [11],
are not operational ; they are phrased as conditions on total executions, rather than as properties that can
be checked in individual steps of an operational semantics. As part of the development of PTRANS, we have
developed a general approach to specifying operational concurrent memory models. Our memory models
must support four functions:

– can read, the workhorse of the memory model, which returns the set of values that a thread can see at
a given memory location

– free set, which returns the set of locations that are free in the memory
– start mem, which gives a default initial memory
– update mem, which updates a memory with a set of memory operations performed by various threads

We define three instances for use in our example: sequential consistency (SC), total store ordering (TSO),
and partial store ordering (PSO). Sequential consistency, the most intuitive memory model, requires that
every execution observed could have been produced by some total order on the memory operations in the
execution. Operationally, this can be modeled by requiring each read of a location to see the most recent
write to that location. We implement SC with a map from memory locations to values and a straightforward
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implementation of the four required functions. The function can read looks up its target in the memory map;
free set returns the set of locations with no values in the map; start mem is the empty map; and update mem
applies the given memory operations to the map, storing a new value on a write or arw, initializing the
location with a starting value on an alloc, and clearing the location on a free.

Start: `1 7→ 0 and `2 7→ 0
write `1 1 write `2 1
x := read `2 y := read `1

Result: x = 0 ∧ y = 0

Fig. 3. Behavior forbidden by SC but allowed in TSO

The TSO and PSO models are slightly more complex: they allow writes to be delayed past other instruc-
tions (reads of other locations in TSO; reads and writes to other locations in PSO), resulting in executions
such as the one shown (in pseudocode) in Figure 3. Under SC, if one of the read instructions returned 0 in
an execution, then we would be forced to conclude that the write instruction in the same thread executed
before it, and so the other read could only read a value of 1. Under TSO, however, the writes may be delayed
past the reads, allowing both reads to return 0. As shown by Sindhu et al. [20], this behavior can be modeled
by associating a FIFO write buffer with each thread (or, for PSO, a write buffer per memory location for
each thread). When a write operation is performed, it is inserted into the executing thread’s write buffer; at
any point, the oldest write in any write buffer may be written to the shared memory. A read operation first
looks for the most recent write to the location in the thread’s write buffer, and if none exists reads from the
location in the shared memory. In this model, atomic arw operations serve as memory fences: they are not
executed until the write buffer of the executing thread is cleared.

Some optimizations, particularly those that do not involve memory in any way, may be proved correct
independently of the memory model. However, one of the purposes of relaxed memory models is to allow a
wider range of optimizations, so we expect that most interesting optimizations will depend on the memory
model being used. In general, some memory models are strictly more permissive than others – for instance,
every execution produced under SC can also be produced under TSO – but depending on our notion of
correctness, it may not follow that every valid SC optimization is also a valid TSO optimization, since an SC
optimization may rely on the correctness of, e.g., a locking mechanism that only functions properly under
SC.

5 Integrating External Analyses

Compiler optimizations are often conditioned on the results of a whole-program analysis. While many of
these analyses can be expressed as CTL side conditions, we may also want to take advantage of the results of
external analyses. One common example is alias analysis, which determines whether two pointer expressions
may, must, or cannot refer to the same location in memory. Compilation frameworks such as LLVM [8] treat
alias analysis as a black box and provide multiple alias analysis algorithms that can be selected at compile
time, ranging from the minimally precise analysis that returns “may” for every query to more sophisticated
algorithms. Various optimizations use the results of alias analysis, and their correctness does not depend on
the details of the algorithm used (though their effectiveness might). Futhermore, static analyses are often
highly dependent on the particular language under consideration; for instance, alias analysis on a register-
machine language with variables is very different from alias analysis on a stack-machine language in which
the only pointers are stored on the evaluation stack.

We can incorporate external analyses for a given target language through a two-step process. First, we
axiomatize the analysis, describing the functions it must provide and the properties that those functions
must satisfy. For instance, register-machine alias analysis provides one function – a function alias analyze
that takes a node in a tCFG and a pair of expressions and returns one of may, must, and cannot. The key
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property of this function is that if alias analyze(e, e′) is must at p then e and e′ must evaluate to the same
location at p in any execution of the program, and if it is cannot then they must not. We might also impose
further requirements: for instance, that two different global variables cannot alias.

Second, we must extend our set of atomic predicates with predicates that call the new functions. We
can then refer to the results of the analysis in our CTL side conditions. Finally, if desired, we can im-
plement the analysis and, by proving that the implementation satisfies the axioms, use it to obtain more
concrete instances of our specifications. These implementations may be provided as algorithms, CTL side
conditions, or general mathematical functions. In the formal semantics of PTRANS, we accomplish this ax-
iomatization/implementation procedure using Isabelle’s locale mechanism. For our case study, we axiomatize
two external analyses for MiniLLVM – the alias analysis described above and a mutual exclusion (mutex)
analysis – as well as an alias analysis for GraphBIL.

6 Verification

In this section, we will show the use of PTRANS in verifying optimizations. The candidate optimization is
Redundant Store Elimination (RSE), which eliminates stores that are always overwritten before they are
used. We will show the form that this optimization takes in both MiniLLVM and GraphBIL, and examine how
its side conditions are affected by different memory models. Finally, we will outline the proofs of correctness
for five different versions of the optimization, and remark on the amount of proof reuse enabled by our
framework.

6.1 Defining Correctness

Before we can begin verifying an optimization, we must clearly state what it means for an optimization
to be correct. The semantics of a compiler transformation can be expressed denotationally in terms of the
program graphs that may be produced as a result of the transformation on a given input graph. We can call
a transformation T correct if, for any graph G, every graph G′ output by applying T to G has some desired
property relative to G. We will use observational refinement [4] as our sense of correctness; in other words,
we will require that any observable behavior of G′ is also an observable behavior of G, implying that T does
not introduce any new behaviors. We will prove this refinement via simulation [3]:

Definition 2. A simulation is a relation � on two labeled transition systems P and Q such that for any

states p, p′ of P and q of Q, for any label k, if p � q and p
k→P p′, then ∃q′. q k→Q q′ and p′ � q′. By abuse

of notation we write P � Q and say that Q simulates P .

The concurrent step relations we have presented for our target languages are unlabeled, but we can add labels
to indicate the portion of the program’s behavior that should be considered observable, which will generally be
some portion of the shared memory. For each optimization to be verified, we will choose the maximum possible
subset of shared memory as our observables, and state a simulation relation that relates any transformed
graph to its original input. (Note that for more complex optimizations, more flexible relations such as weak
(stuttering) simulation may be required, but the overall structure of the proof will remain unchanged.)

While PTRANS is expressive enough to allow optimizations that transform multiple threads simulta-
neously, many optimizations (especially concurrent retoolings of sequential optimizations) only transform
a single thread. The following theorem allows us to extend a correct simulation relation on states in a
single-thread CFG to one on entire tCFG states:

Definition 3. Let the execution state of a multithreaded program with tCFG G be a pair (states,m), where
states is a vector of per-thread execution states and m is a shared memory. The lifting of a simulation
relation � on single-threaded CFGs to concurrent execution states relative to a thread t is defined by
(states,m) d�et (states ′,m′) , (statest,m) � (states ′t,m

′) ∧ ∀u 6= t. statesu = states ′u.

Theorem 1. Fix a memory model supporting the functions free set, can read, and update mem. Let G be a
tCFG, t be a thread in G, and obs be the set of observable memory locations. Suppose that � is a simulation
relation such that G′t � Gt, G′u = Gu for all u 6= t, and for all (s′,m′) � (s,m) the following hold:
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1. free set m = free set m′

2. For any u 6= t, if u,Gu,m′ ` s1
a−→ s2, then can read m u ` = can read m′ u ` for every location `

mentioned in an operation in a
3. For any u 6= t, if u,Gu,m ` s1

a−→ s2 and update mem m′ a m′2 holds, then there exists some m2 such
that update mem m a m2 holds, m2|obs = m′2|obs , and (s′,m′2) � (s,m2)

Then d�et is a simulation relation such that G′ d�et G.

While the exact conditions of the theorem are complicated, the intuition is straightforward: if � is a
simulation relation for Gt and G′t such that (s′,m′) � (s,m) implies that m and m′ look the same to all
threads u 6= t, and � is preserved by steps of threads other than t, then d�et is a simulation relation for G
and G′. This theorem allows us to break proofs of correctness for transformations on multithreaded programs
into two parts: correctness of the simulation on the transformed thread, and validity of the relation with
respect to the remaining threads. Note that in the case in which the simulation relation requires that m = m′,
i.e., in which the optimization does not change the effects of Gt on shared memory, most of these conditions
are trivial. In optimizations that affect the shared memory, on the other hand, the proof of the theorem’s
premises will involve some effort.

6.2 Redundant Store Elimination for MiniLLVM

We can now attack the problem of proving the correctness of redundant store elimination (RSE) for MiniL-
LVM. The basic shape of the program fragment to be rewritten is shown in Figure 4. Note that s is replaced
by an is pointer instruction, rather than being eliminated entirely, to preserve failures: if e2 is not pointer-
valued at s in the original program no steps are possible, while eliminating s would allow the program to
run until reaching s′, potentially introducing new behavior.

Fig. 4. Redundant Store Elimination

In sequential code the optimization is safe if, between the eliminated store s and the following store
s′, the location referred to by e2 is not read and the value of e2 is not changed. In the parallel case, the
correctness condition is more complex, since changes to a memory location can be observed by other threads.
While correctness can be ensured by requiring that no memory operations are performed between s and s′

or by using mutual exclusion analysis to ensure that no other threads use the memory at e2 before s′, under
relaxed memory models, the optimization can be more widely applied.

The “rewrite plus condition” style of PTRANS lends itself well to stating multiple versions of an opti-
mization for different memory models. We begin with the rewrite portion of the transformation, which is the
same in all cases, and the common portion of the side condition: the basic pattern that describes the node to
be transformed, and a placeholder for the remaining conditions (note that the condition is checked starting
at the entry node of the tCFG):

replace n with is pointer e2 if EF nodet(n) ∧ stmtt(store ty1 e1, ty
∗
2 e2) ∧ ϕ

Now, for each memory model, we need only provide the appropriate condition ϕ. In general, this will be an
“until”-property stating necessary conditions on the nodes between n and the next store to e2.

9



Sequential consistency, the most restrictive of our three memory models, naturally has the most re-
strictive side condition. The optimization will be safe if removing the store at n does not expose any new
behaviors, including those caused by other threads seeing shared values in a different order. Thus, there are
two approaches to securing the optimization: we could require that no memory operations occur between
n and the following store, or we could require that e2 be private to t. We will take the more complicated
approach, using our mutual exclusion analysis to ensure that e2 is not exposed to other threads while t is
in the region between n and the following store to e2. Using the mutex predicates described in Section 5, as
well as a not touches predicate that ensures that a given memory location is not read or modified by a given
thread, the condition can be written as:

ϕSC , protected(x, e2) ∧ ¬is(x, e2) ∧A in criticalt(x, e2) ∧ (nodet(n) ∨ not touchest(e2))

U (in criticalt(x, e2) ∧ ¬nodet(n) ∧ ∃ty ′1 e′1 ty ′2. stmtt(store ty ′1 e′1, ty
′
2 e2))

Next we will consider the appropriate side condition for the TSO memory model. Since TSO allows
writes to be delayed past other operations, in a program with a redundant store, the redundant store may
be delayed until immediately before the following store to e2. If this behavior is possible in the original
program, the observable behaviors of the transformed program will be a strict subset of those of the original
program. Thus, we can use our side condition to describe the circumstances under which the store at n could
have been delayed in the original program. In TSO, a write can be delayed past reads to different locations,
but not past writes or atomic read-writes. To construct the necessary side condition we must first define a
predicate not loads that is analogous to not touches, but checks only for load instructions that might alias,
rather than all memory operations. We also make use of a predicate not mods that checks that the value of
e2 is not changed by the current instruction (i.e., the local variables that appear in e2 are not modified). We
can then construct the following condition:

ϕTSO , AXt(A not modst(e2) ∧ not loadst(e2) ∧ ¬(∃x ty1 e1 ty2 e′2 ty3 e3. stmtt(store ty1 e1, ty
∗
2 e′2) ∨

stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))

U (¬nodet(n) ∧ ∃ty ′1 e′1 ty ′2. stmtt(store ty ′1 e′1, ty
′
2 e2)))

where AXt is a derived temporal operator defined such that AXt ϕ iff ϕ is true in every state in which
the thread t has advanced by one node (regardless of the behavior of other threads). The fragment of the
condition inside the AXt operator provides a useful characterization of the nodes between n and the following
store to e2; we will call it ϕ′TSO , where ϕTSO = AXt ϕ

′
TSO . Note that ϕSC is also a reasonable side condition

under TSO, and we could form a more general optimization by using ϕSC ∨ ϕTSO as our side condition.
The relaxation of the PSO memory model is a more permissive version of that of TSO, so we can obtain

a side condition for it by relaxing the constraints of ϕTSO . A write in PSO can be delayed past reads and
writes to different locations, but not past operations on the same location or atomic read-writes, so the
corresponding side condition is:

ϕPSO , AXt(A not modst(e2) ∧ not touchest(e2) ∧ ¬(∃x ty1 e1 ty2 e′2 ty3 e3.

stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))

U (¬nodet(n) ∧ ∃ty ′1 e′1 ty ′2. stmtt(store ty ′1e
′
1, ty

′
2 e2)))

This condition is strictly weaker than ϕTSO , allowing the optimization to be applied to a wider range of
programs. As above, we also define ϕ′PSO such that ϕPSO = AXt ϕ

′
PSO for use in our proofs of correctness.

We are now ready to demonstrate the correctness of MiniLLVM RSE in PTRANS. As laid out in Sec-
tion 6.1, we prove correctness by showing that for any transformed tCFG G′ produced by applying the
optimization to a graph G, there exists a simulation relation � such that G′t � Gt, states related by � make
the same values visible to threads other than t, and steps by threads other than t preserve �. For each
version of RSE, we will present such a relation and sketch the proof of its correctness.

Theorem 2. Let G′ be a tCFG in the output of RSE (ϕSC ) on a tCFG G, and ` be the location targeted by
the redundant store removed in G′. Let �SC be the relation such that (s′,m′) �SC (s,m) iff
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– s = s′

– either ` ∈ free set m and ` ∈ free set m′, or ` /∈ free set m and ` /∈ free set m′

– either m = m′, or else ϕSC holds at the program point of s in G and m|` = m′|`.

Then d�SC et is a simulation relation such that G′ d�SC et G with all locations other than ` observable.

Proof. Consider two related states (s,m) of Gt and (s′,m′) of G′t. In case (1), the only interesting case is the
one in which s is at the transformed node n; in this case, G′t executes the is pointer instruction and Gt
executes the store instruction. Since the side condition of the RSE transformation is true on G, we know
that ϕSC holds at n, and so �SC holds on the resulting states. If, on the other hand, we are in case (2), then
we know that ϕSC holds, so s must be in the region between n and the next store to e2. If we have not yet
reached the next store to e2, then since �SC holds we know that it does not read or modify the memory at `,
and we can conclude that Gt and G′t execute the same instruction and arrive in new configurations (s2,m2)
and (s′2,m

′
2) such that m2 and m′2 differ only at ` and ϕSC still holds. The guarantees of mutual exclusion

ensure the separation of threads required by Theorem 1, and we can conclude that d�SC et is a simulation
relation showing the correctness of the SC version of RSE. ut

Recall that, while in SC the memory is simply a map m from locations to values, in TSO and PSO it is
a pair (m, b) of a shared memory and per-thread write buffers. Since the correctness of our conditions under
these models depends on our ability to delay stores until they become redundant, we must have a notion of
one buffer being a “redundant expansion” of another.

Definition 4. A write buffer is a queue of writes expressed as location-value pairs. A write buffer b′ is a
redundant expansion of b if b′ can be constructed from b by adding, in front of each pair (`, v) in b, zero or
more writes of other values to `. We will say that a collection of write buffers c′ is a redundant expansion of
a collection c when each write buffer c′t is a redundant expansion of the corresponding write buffer ct.

Because the added writes appear immediately in front of other writes to the same location, they can be
immediately overwritten when the buffers are cleared, and are never read when looking for the latest write
to a location. This allows a redundant expansion of b to simulate the behavior of b with regard to the
memory-model functions, and we can use this to explain the correctness of RSE under TSO and PSO:

Theorem 3. Let G′ be a tCFG in the output of RSE (ϕTSO) on a tCFG G. Let �TSO be the relation such
that (s′, (m′, b′)) �TSO (s, (m, b)) iff

– s = s′, m = m′, and bu = b′u for all u 6= t, and
– either (1) bt is a redundant expansion of b′t, or else (2) ϕ′TSO holds at the program point of s in G, the

store eliminated in G′ was to some expression e2, and there is a location ` such that e2 evaluates to ` in
s, the last write in bt is a write to `, and the rest of bt is a redundant expansion of b′t.

Then d�TSOet is a simulation relation such that G′ d�TSOet G with all locations observable.

Proof. By Theorem 1. Consider two related states (s, (m, b)) of Gt and (s′, (m′, b′)) of G′t. If bt is a redundant
expansion of b′t (case 1), then the only interesting case is the one in which s is at the transformed node n;
in this case, G′t executes the is pointer instruction, and Gt executes the store instruction, evaluating e2 to
some location ` and adding a write to ` to its buffer – thus the resulting buffer has the structure described in
case (2). Since the side condition of the RSE transformation is true on G, we know that ϕTSO = AXt ϕ

′
TSO

holds at n, and so �TSO holds on the resulting states. If, on the other hand, we are in case (2), s must be
in the region between n and the next store to e2. If s is at a store to e2 other than n, then both G and G′
commit a write to `; since bt was a redundant expansion of b′t followed by a write to `, this new write makes
the last one redundant, and we are now in case (1). If s is somewhere between n and the following store,
then since ϕ′TSO holds we know that the current instruction does not read the memory at ` and is neither a
store nor a cmpxchg, so we can conclude that Gt and G′t execute the same instruction with the same result,
that the instruction adds no new writes to t’s write buffer, and that the extra write to ` in bt is not forced
into main memory (as it would be by a cmpxchg instruction). Thus, case (2) of �TSO still holds. Since the
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only difference in states allowed by �TSO is in the write buffer for t, which is neither visible to nor affected
by threads other than t, the separation of threads required by Theorem 1 holds, and we can conclude that
d�TSOet is a simulation relation showing the correctness of the TSO version of RSE. ut

Theorem 4. Let G′ be a tCFG in the output of RSE (ϕPSO) on a tCFG G. Let �PSO be the relation such
that (s′, (m′, b′)) �PSO (s, (m, b)) iff

– s = s′, m = m′, bu,` = b′u,` for all ` and all u 6= t, and
– either (1) bt,` is a redundant expansion of b′t,` for all `, or else (2) ϕ′PSO holds at the program point

of s in G, the store eliminated in G′ was to some expression e2, and there is a location ` such that e2
evaluates to ` in s, bt,` is a redundant expansion of b′t,` followed by a write to `, and bt,`′ is a redundant
expansion of b′t,`′ for all other locations `′.

Then d�PSOet is a simulation relation such that G′ d�PSOet G with all locations observable.

Proof. By Theorem 1. The proof is nearly identical to that of the TSO case. Since write buffers are per-
location, store instructions to locations other than ` may be executed between the eliminated store and
the following write to ` without changing the relationship between bt,` and b′t,`, justifying the weaker side
condition; otherwise, the proof proceeds entirely analogously. ut

6.3 Redundant Store Elimination for GraphBIL

Redundant stores in a stack-machine language such as GraphBIL are somewhat less obvious than their
counterparts in a register-machine language. In particular, since the operands of store instructions are im-
plicitly drawn from the stack, there is much less indication in the program syntax of which stores might be
redundant, as can be seen in Figure 5. However, by relying on the results of a stack-based alias analysis, we
can perform a very similar optimization. Because mutual exclusion analysis is not obviously transferrable
to the stack-machine context, we will limit ourselves to the TSO and PSO models; however, within these
models, the specification of the optimization and the required simulation relations are remarkably close to
their MiniLLVM counterparts.

Fig. 5. Redundant stind Elimination

As before, we begin by stating an optimization skeleton that will be used across several memory models:

replace n with pop pointer if EF nodet(n) ∧ stmtt(stind) ∧ ϕ

The GraphBIL counterpart to a MiniLLVM store is the stind instruction, which reads a location and a
value from the evaluation stack and stores the value to the location. Just as in MiniLLVM, our condition
under TSO must ensure that there are no reads from the location of the redundant store and no stores to
any location between the first and the second store. Note that we must use alias analysis to ensure that the
following stind instruction targets the same location as the original stind, since there is no variable whose
value we can check is held constant from one to the other. Our stack-machine alias analysis predicates have
the form must aliast(i, (n

′, i′)) (and similarly for cannot alias), where if must aliast(0, (n
′, 1)) holds at a node

n in t, then the element at the top of the stack at n must alias with the element 1 slot below the top of the
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stack at n′ in all executions. We can use this to build a predicate not loadst(n, i) that checks that no loads
occur which could alias to stack slot i at node n, and define the condition as:

ϕTSO , AXt(A not loadst(n, 1) ∧ ¬(∃ty c m ty1...tyk. stmtt(stind) ∨
stmtt(callvirt ty c::m(ty1, ..., tyk)) ∨ stmtt(newobj void c:: .ctor(ty1, ..., tyk)) ∨ stmtt(box c))
U (¬nodet(n) ∧ stmtt(stind) ∧must aliast(1, (n, 1))))

Under PSO, we can relax the condition on stores to other locations, and the condition is otherwise
identical:

ϕPSO , AXt(A not loadst(n, 1) ∧ not storest(n, 1) ∧ ¬(∃ty c m ty1...tyk.
stmtt(callvirt ty c::m(ty1, ..., tyk)) ∨ stmtt(newobj void c:: .ctor(ty1, ..., tyk)) ∨ stmtt(box c))
U (¬nodet(n) ∧ stmtt(stind) ∧must aliast(1, (n, 1))))

We define ϕ′TSO and ϕ′PSO by stripping off the AXt operators as above.
The structure of our proofs for GraphBIL is very close to that of the proofs for MiniLLVM. We present

nearly identical candidate simulation relations, and divide the proof of single-thread simulation into four
cases: case 1 of the simulation relation at the transformed node, case 1 of the simulation relation at other
nodes, case 2 of the simulation at the following store, and case 2 of the simulation at a node between the
transformed node and the following store. Each case follows by the same logic as in the MiniLLVM proofs.

Theorem 5. Let G′ be a tCFG in the output of RSE (ϕTSO) on a tCFG G. Let �TSO be the relation such
that (s′, (m′, b′)) �TSO (s, (m, b)) iff

– s = s′, m = m′, and bu = b′u for all u 6= t, and
– either (1) bt is a redundant expansion of b′t, or else (2) ϕ′TSO holds at the program point of s in G, the

store eliminated in G′ was to some location `, the last write in bt is a write to `, and the rest of bt is a
redundant expansion of b′t.

Then d�TSOet is a simulation relation such that G′ d�TSOet G with all locations observable.

Theorem 6. Let G′ be a tCFG in the output of RSE (ϕPSO) on a tCFG G. Let �PSO be the relation such
that (s′, (m′, b′)) �PSO (s, (m, b)) iff

– s = s′, m = m′, bu,` = b′u,` for all ` and all u 6= t, and
– either (1) bt,` is a redundant expansion of b′t,` for all `, or else (2) ϕ′PSO holds at the program point of s

in G, the store eliminated in G′ was to some location `, bt,` is a redundant expansion of b′t,` followed by
a write to `, and bt,`′ is a redundant expansion of b′t,`′ for all other locations `′.

Then d�PSOet is a simulation relation such that G′ d�PSOet G with all locations observable.

6.4 Factoring Out Common Elements

One of the goals of VeriF-OPT is to simplify the process of verifying optimizations by making proofs as
modular as possible. In particular, we aim to leverage the language-independence of the framework to state
and prove general compiler verification principles, which can then be instantiated for any target language.
The proof of correctness of each of the RSE optimizations relies on about 345 lemmas (excluding facts about
infinite lists, general bisimulation, and other library functions/proofs). Of these, roughly:

– 55 were basic facts about the semantics of PTRANS.
– 90 were about graphs, CFGs, tCFGs, and paths through tCFGs.
– 30 were about step relations and simulations between graphs given step relations, including the theorems

of Section 6.1 that let us lift single-thread simulations to concurrent programs.

These lemmas were reused for GraphBIL verification, and could be reused again in the verification of any
optimization on any language under any memory model. Furthermore, roughly:
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– 25 were about specific memory models, but were independent of the target language.
– 120 were about MiniLLVM, but were independent of the memory model.
– 10 were about MiniLLVM under particular memory models, but could be reused for any MiniLLVM

optimization.
– 5 were specific to RSE in MiniLLVM, but were independent of the memory model.
– 10 were specific to the particular version of RSE under the particular memory model being verified.

Finally, the simulation relation and the structure of the proof of simulation for a given memory model in
MiniLLVM needed only relatively small changes to be adapted for the same memory model in GraphBIL.
In all, about half of the work was completely generalizable to other systems; of what remained, the majority
was specific to the language being analyzed, but could be reused for any optimization in that language
under any memory model, and proof techniques for one optimization in one language could be reused for
a similar optimization in a markedly different language. This provides some evidence of the advantages of
the language-independent approach, and we expect that as more target languages and optimizations are
incorporated into the system, the library of reusable facts will continue to grow.

7 Conclusion and Future Work

In this paper, we present the PTRANS specification language for transformations on parallel programs,
and show how it can be used to state and verify compiler optimizations in multiple languages and memory
models. We outline a method for stating and verifying optimizations that transform a single thread in a
multithreaded program, with some parts independent of and others dependent on the memory model under
consideration. We use this method to verify a redundant store elimination optimization on an LLVM-based
language under three memory models, showing that the behaviors of every output program are possible
behaviors of the input program, and show that much of the proof effort can be reused for verifying a related
optimization on a CIL-based stack-machine language, despite significant differences in syntax and semantics.
We believe that the PTRANS methodology will simplify the process of stating and verifying optimizations on
parallel code, by allowing for clean, proof-amenable statements of program transformations and emphasizing
modular, reusable formalizations and proofs. Ultimately, we hope that the methodology here presented will
aid compiler designers and formal methods researchers in creating new verified optimizations and compilers
for a wide range of source, target, and intermediate languages.

The framework as described leaves plenty of room for future work. Since we have made it one of our
primary goals to be able to state and verify optimizations involving concurrency, another clear path forward
is to test our framework on a wider range of concurrency paradigms, such as the fork-join model used in C
and Java. In order to state correct optimizations in PTRANS on programs with fork and join operations,
we would need to write conditions that identified (perhaps approximately) which instructions could be
guaranteed not to execute in more than one thread, and otherwise construct side conditions that, when
checked on a single thread, ensured desirable runtime properties on all threads spawned by that thread –
for instance, determining from the code of a single thread that all threads spawned will preserve mutual
exclusion for a resource. There are no theoretical limitations barring us from expressing such properties in
our framework, and trying to verify optimizations on, for instance, MiniLLVM with fork and join instructions
would be an interesting case study and bring our target languages a step closer to the real world.

8 Related Work

Our work builds on the TRANS approach of expressing optimizations as rewrites on control flow graphs
with temporal logic side conditions due to Lacey et al. [7] and Kalvala et al. [5]. The approach has been
put into practice in several tools, including the Cobalt specification system [9], which also aims to prove
the correctness of optimizations. While Cobalt provides fully automatic verification for its optimizations,
this automation comes at the cost of expressiveness: Cobalt is limited to a much smaller set of CTL side
conditions than TRANS in general. To the best of our knowledge, neither Cobalt nor any other work in
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TRANS has sought to incorporate language-independence or awareness of concurrency. In previous work, we
verified RSE on MiniLLVM and a simplified RSE on GraphBIL [14, 15], and gave an algorithm for executing
PTRANS specifications as prototype optimizations [12].

There is considerably less work in the literature on verified stack-machine optimizations than on their
register-machine counterparts. Notably, Saabas and Uustalu [18] have verified (with pen and paper) several
optimizations for a simple stack-machine language, including dead store elimination and several other dead
code elimination optimizations, by formalizing dataflow analyses in terms of type systems for both stack
locations and local variables.

The CompCertTSO project [19], which aims to add support for concurrency to CompCert, involved
the verification of several optimizations that could be lifted directly from single-threaded to concurrent
programs, as well as a concurrency-specific fence elimination optimization [21]. The intermediate languages
used are composed with an abstract machine implementing the TSO memory model, so that facts about TSO
can be proved separately from facts about the intermediate languages. However, there is no evidence that
the proofs of CompCertTSO can be generalized to other intermediate languages or other memory models.
Ševč́ık [22] has also verified various optimizations, including redundant instruction eliminations, under data-
race-free sequential consistency, specifying optimizations directly as transformations on the execution traces
of programs. This approach is language-independent, but the optimizations modified may not correspond to
any systematic modification of program code, and the focus is more on verifying transformations regardless
of target language than on supporting the verification of language-specific optimizations.
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