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Abstract. Communicating Sequential Processes (CSP) is a well-known
formal language for describing concurrent systems, where transition se-
mantics for it has been given by Brookes, Hoare and Roscoe [1]. In this
paper, we present trace refinement model analysis tools based on a gen-
eralized transition semantics of CSP, which we call HCSP, that merges
the original transition system with ideas from Floyd-Hoare Logic and
symbolic computation. This generalized semantics is shown to be sound
and complete with respect to the original trace semantics. Traces in our
system are symbolic representations of families of traces as given by the
original semantics. This more compact representation allows us to ex-
pand the original CSP systems to effectively and efficiently model check
some CSP programs that are difficult or impossible for other CSP sys-
tems to analyze. In particular, our system can handle certain classes of
non-deterministic choices as a single transition, while the original se-
mantics would treat each choice separately, possibly leading to large or
unbounded case analyses. All the work described in this paper has been
carried out in the theorem prover Isabelle [2]. This then provides us with
a framework for automated and interactive analysis of CSP processes. It
also gives us the ability to extract Ocaml code for an HCSP-based simula-
tor directly from Isabelle. Based on the HCSP semantics and traditional
trace refinement, we develop an idea of symbolic trace refinement and
build a model checker based on it. The model checker was transcribed
by hand into Maude [3] as automatic extraction of Maude code is not
yet supported by the Isabelle system.

1 Introduction

Communicating Sequential Processes (CSP) is a process algebra to describe the
behavior and interactions of concurrent systems. Due to the expressive features
of external and internal choice together with the parallel composition in CSP,
it has been used practically in industry for specifying and verifying concurrent
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features of various systems, especially ones combining human operators and au-
tomations, such as the medical mediator system in Gunter et al. [4], the airline
ticket reservation system in Wong and Gibbons’ paper [5] and interactive systems
with human error tolerance in Wright et al. [6].

In the traditional semantics of CSP, processes are given semantics via the
set of traces they may generate, the set of sequences of individual actions the
processes may execute. For example, the CSP process c?x : B → P is generally
modeled as receiving a single value across a channel c from the set {x|B} and
proceeding as P with that value. The set of possible traces will depend on the
size of that set. Previous CSP simulators and model checkers have followed this
semantics by enumerating all traces individually. In practice, if the set {x|B}
is an infinite set, current CSP simulators and model checkers actually create
an endless number of similar processes and wait for other parts of the program
to stop these processes. This affects the efficiency and decreases the scope of
analyzable problems for these tools, particularly for model checking.

In this paper, we present a simulator HSim to effectively generate the behav-
iors of CSP programs, and a model checking tool HMC to check trace refinement
properties of CSP programs based on Holistic CSP (HCSP) semantics, a new
semantics for CSP processes that uses a symbolic representation of actions to
capture a group of properties simultaneously instead of considering only a single
element with a single property. The approach we take in this work is to represent
families of transitions in CSP by a single transition in HCSP. This allows us to
view a set of actions as a whole in some contexts, but also divide it based on
various properties in other contexts.

A. (
l

x:x>0∧x<10

A.x→ SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]|(A?x : x > 0 ∧ x < 150→ SKIP)

B. (
l

x:x>0∧x<105

A.x→ SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 106}]|(A?x : x > 0 ∧ x < 15 ∗ 105 → SKIP)

C. (
l

x:x>0∧x<10

A.x→ SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]|(
m

y:y=1−1

A?x : x > y → SKIP)

D. (
l

x:x>0∧x<10

A.x→ SKIP)|[{k.x|k = A ∧ x > 0 ∧ x < 100}]| (A?x : x > 0 ∧ x < 100→ SKIP)
2(A?x : x > 99→ SKIP)

Fig. 1. Example

The differences between the original CSP semantics based tools and the
HCSP semantics based tools can be demonstrated by some very simple exam-
ples. Four such examples are shown in Figure 1. Each process is the parallel
composition of a process selecting a value from a range with a process receiving
a value restricted to be in another range, with synchronization requiring the
shared value to be in a third range. For each process, the problem was posed,
does the process refine itself. Logically, the are at most three cases to be consid-
ered: is the value chosen within the range of synchronization, and if so is it in the
range to be received. The model checker FDR2 [7] can handle case A easily, but
it fails to terminate on cases B because of the large data sets for each restrict-
ing set, and C because of the infinite restricting set on the receiving process.
On process B it begins to run, but eventually generates a stack overflow. When



process C is directly input into the CSPM-based simulator ProBE, the whole
program crashes. However, HMC, the HCSP model checker we have derived
from the semantics we discuss in this paper, easily verifies the trace refinement
properties of the processes A - D with respect to themselves in the same amount
of time. We will show more details of the experiments in Section 5, but from
these examples, we can clearly see that the running time of FDR2 depends on
the size of the sets bounding choice and parallel composition in each process.

These facts reflect, in part, that the original CSP and Machine-Readable
CSP (CSPM) semantics view replicated operators (Replicated Internal Choice,
Replicated External Choice, etc) as macros of their binary versions over sets.
This means that the original CSP and CSPM semantics cannot express a repli-
cated operator if the set of the replicated operator is infinite, such as the second
Replicated Internal Choice operator in process C. Even if the set is finite, the cost
is very expensive for CSP-semantics-based tools to run a small replicated process
in a large macro, such as in the process B. On the other hand, HCSP-semantics-
based tools can overcome this problem and run CSP processes regardless of the
size of sets bounding replicated operators. By using HCSP semantics, the three
processes in the example will have the same number of possible next moves. This
property allows the HCSP-semantics-based tools to run faster than the tradi-
tional CSP-semantics-based tools in some cases. In addition, HCSP-semantics-
based tools can expand the set of possible CSP processes to analyze; processes
B and C above are examples of this fact. We will see that this fact is useful in
some real applications such as the medical mediator system in Gunter et al. [4].

This paper’s contribution is a general methodology for the translation of tra-
ditional transition semantics of a process algebra to its symbolic semantics, and
from that symbolic semantics the derivation of tools for simulation and model
checking, combined with the direct application of this methodology to the pro-
cess algebra CSP and a demonstration of the advantages acquired by the derived
tools. Our methodology replaces transitions between individual processes with
transitions between configurations of parametrized processes and propositions
describing constraints on the process parameters. This generalized framework
allows us to expand the processes given semantics to include those ranging over
infinite or dynamically calculated sets of data (such as actions), including infinite
choice and parallel composition operators. The translated symbolic semantics for
CSP, HCSP is proved to be sound and complete (for the common subset) with
respect to the traditional transition semantics in the theorem prover Isabelle. We
directly extracted the simulator HSim is from the HCSP semantics in Isabelle.
In a similar manner, we define a general symbolic trace refinement relation that
is compatible with the symbolic transition relation, and prove it equivalent to
traditional trace refinement. This symbolic trace refinement property together
with our symbolic transition relation in turn directly translates to the proce-
dures of our model checker HMC. The symbolic nature of HMC allows it to
handle a wider class of processes and to decide trace refinement more efficiently
for processes within scope of existing model checkers, but where the size of the
data causes them to be handle extremely inefficiently or not at all.



2 Syntax and Semantics

The syntax of HCSP and informal meaning is given in Figure 2. For the remain-
der of this paper, the following name conventions will be used. We will use P
and Q for processes. Lower case p refers to an HCSP process name. The letter c
represents an HCSP channel, while the letter a represents an HCSP action. The
letter B is a proposition describing the property of a set. In HCSP, we include
both variables and parameters, which are distinct types. We use k for variables
ranging over HCSP channels and x for variables over actions. We use U and V to
refer to parameters ranging over channels and actions. Variables and parameters
serve similar functions, but differ as follows: variables may occur free or bound
in HCSP processes and may be replaced by actions or channels by substitution,
while parameters occur essentially as local constants not subject to binding or
substitution. In the rest of the paper, we will use freeParams to refer to a func-
tion returning all free parameters in an expression of arbitrary type. We will use
l to represent a transition label. Finally, the Greek letter ρ refers to an assign-
ment function that assigns values to parameters. To facilitate the application of
HCSP to specific examples, it is parameterized by four user-defined types: a type
of expressions for actions and channels (acts), a type of propositions, a type of
process names and a type of values to be assigned to acts. One remark must
be made here concerning the scope of variables. In the processes c?x : B → P ,l

x:B

P and
m

x:B

P , the scope of variable x is both the proposition B and the pro-

cess P , while the scope of the variables k and x is only the proposition B in the
processes P |[{k.x|B}]|Q and P \ {k.x|B}.

P =
Ω Successful termination

| STOP Unexpected termination
| if b then P else Q If statement
| P ;Q Sequential execution
| P uQ Binary internal choice
| c?x : B → P External set prefix
| P |[{k.x|B}]|Q Parallel composition
| let p = P in Q Local process name binding

| SKIP Awaiting successful termination
| c.a→ P Prefix by action a on channel c
| $p Process name p as prcoess
| P2Q Binary external choice

|
l

x:B

P Replicated internal choice

|
m

x:B

P Replicated external choice

| P \ {k.x|B} Hiding over a set of actions

Fig. 2. HCSP Syntax

The syntax of HCSP differs from that of CSPM by Bryan Scattergood [8] in
three ways. Firstly, the actions of CSP are explicitly divided into channels and
actions (written c.a) in HCSP syntax. Secondly, for the sets used in constructs
such as the parallel composition of two processes or replicated internal choice, we
use a set comprehension notation. This decomposition of sets into variables and
predicates will facilitate the statement of the transition rules of HCSP semantics.
Finally, HCSP currently lacks the CSP Renaming operator.

Representative rules for the semantics for HCSP is given in Figures 3 - 4. The
semantics is a merge of the original CSP transition semantics given by Brookes
et al. [10] with ideas from Floyd-Hoare Logic [11] and symbolic computation. In
order to describe the HCSP semantics, there are some functions that need to



be supplied for the evaluations of user-defined types. A family of substitution
functions T [a/x] is needed for the replacement of variables by acts in each of acts,
propositions, and process names. Using these, we define the substitution function
for processes. There also needs to be a family of user-defined evaluation functions
for acts and a “models” function, |=, for checking whether a proposition is
true under a given assignment function. We define the functions sem(ρ, P ) and
sem(ρ, l) as interpretation functions to interpret a given HCSP process or label
as a CSP process or label with respect to valuation ρ. The labels of the HCSP
semantics will be ranged over by l as follows:

l =
√
| τ | (U.V )

The label
√

represents process completion, the label τ represents a process per-
forming an invisible action, and the label (U.V ) represents a pair of parameters,
one for a channel and one for a real action. In any execution of a process in accor-
dance with this semantics, the sequence of transitions is labeled with mutually
distinct pairs of parameters (U.V ), when not labeled by

√
or τ .

Rule Replacement HCSP Corresponding Rule

P uQ τ−→ P (α, γ, S, P uQ)
τ−→ (α, γ, S, P ) Int choice1

P
(c.a)−→ P

′
(c.a) /∈ {k.x|B}

P |[{k.x|B}]|Q (c.a)−→ P
′|[{k.x|B}]|Q

(α, γ, S, P )
(U.V )−→ (α′, γ′, S′, P ′)

∃ρ . ρ |= (¬B[U/k][V/x] ∧ γ′)
Par out1

(α, γ, S, P |[{k.x|B}]|Q)
(U.V )−→

(α′,¬B[U/k][V/x] ∧ γ′, S′, P ′|[{k.x|B}]|Q)

(c.a) ∈ {k.x|B}
P

(c.a)−→ P ′ Q
(c.a)−→ Q′

P |[{k.x|B}]|Q (c.a)−→ P
′|[{k.x|B}]|Q′

∃ρ . ρ |= (U = U ′ ∧ V = V ′ ∧ B[U/k][V/x] ∧ γ′′)

(α, γ, S, P )
(U.V )−→ (α′, γ′, S′, P ′)

(α′, γ′, S′, Q)
(U′.V ′)−→ (α′′, γ′′, S′′, Q′)

Par in

(α, γ, S, P |[{k.x|B}]|Q)
(U.V )−→ (α′′,

U = U ′ ∧ V = V ′ ∧ B[U/k][V/x] ∧ γ′′, S′′, P ′|[{k.x|B}]|Q′)

Fig. 3. HCSP semantics (part of category One and category Two)

We present a labeled transition system for HCSP over quadruples of the form
(α, γ, S, P ) or (β, φ, T,Q), which are called configurations in this paper, where
P and Q are HCSP processes, γ and φ are environment condition propositions
in HCSP that are intended to state the current requirements for parameters “in
scope”, including those occurring free in P , and α and β are sets of parameters
large enough to contain all parameters occurring free in P or γ. The tuples
(l, α, γ, S, P ) or (l, β, φ, T,Q) are called moves in this paper. We carry α (or
β) with us to allow for the choice of fresh parameter names guaranteed not to
clash with a potentially bigger scope than the one locally presented by P (or
Q) and γ (or φ). S and T are the interpretation functions for interpreting a
process name p in a given HCSP process. The environment conditions γ (or
φ) play the role of providing the pre- and post-condition for each transition.
The values potentially represented by labels of the form (U.V ) are progressively
restricted by the conditions in each of the subsequent quadruples resulting from



each transition in the execution. In this way, a single execution in the transition
semantics of HCSP potentially represents a parameterized family of executions
from the original CSP semantics.

Rule Replacement HCSP Corresponding Rule

c.a→ P
(c.a)−→ P

U /∈ α V /∈ {U} ∪ α
∃ρ . ρ |= (U = c ∧ V = a ∧ γ)

Act prefix

(α, γ, S, c.a→ P )
(U.V )−→

({U, V } ∪ α,U = c ∧ V = a ∧ γ, S, P )

Macro Replacement HCSP Corresponding Rule

c?x : B → P =
m

x:B

c.x→ P

U /∈ α V /∈ {U} ∪ α
∃ρ . ρ |= (U = c ∧ B[V/x] ∧ γ)

Ext prefix

(α, γ, S, c?x : B → P )
(U.V )−→

({U, V } ∪ α,U = c ∧ B[V/x] ∧ γ, S, P [V/x])

l

x:B

P = P [a1/x] u . . . u P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α
∃ρ . ρ |= (B[U/x] ∧ γ)

Rep int choice
(α, γ, S,

l

x:B

P )
τ−→

({u} ∪ α,B[U/x] ∧ γ, S, P [U/x])

m

x:B

P = P [a1/x]2 . . .2P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α ∃ρ . ρ |= γ′

({u} ∪ α,B[U/x] ∧ γ, S, P [U/x])
τ−→ (α′, γ′, S′, P ′)

Rep ext tau
(α, γ, S,

m

x:B

P )
τ−→

(α′, γ′, S′, (
m

x:B∧x6=U
P )2P ′)

m

x:B

P = P [a1/x]2 . . .2P [an/x]

a1 . . . an ∈ {x|B}

U /∈ α l 6= τ ∃ρ . ρ |= γ′

({u} ∪ α,B[U/x] ∧ γ, S, P [U/x])
l−→ (α′, γ′, S′, P ′)

Rep ext nor
(α, γ, S,

m

x:B

P )
l−→ (α

′
, γ
′
, S
′
, P
′
)

Fig. 4. HCSP semantics (category Three)

We will describe our translation process by dividing the CSP semantics into
three categories. The first category contains rules for basic operators having no
side conditions other than

√
-τ label constraints. The second category contains

rules with side conditions needing to be translated into the HCSP framework,
i.e., the operators with set or boolean guard information. The third category
includes rules for operators that are treated as macros in CSP, which are all
replicated operators. When translating the original CSP semantics into HCSP
semantics, the main task is to merge information about actions and channels
into the environment condition γ. Basically, we will do the translation by two
step processes. Step One is to solve a problem that often arises when translating
substitution-based semantics to an environment-based semantics. The problem is
misinterpreting free variables via free-variable capture. We divide the identifiers
into variables and parameters to solve the problem. Parameters will be used in
each rule that involves passing through a variable binding. Those rules will be



altered to always replace existing variables with new fresh parameters when we
are evaluating a given process.

Step Two is to simultaneously translate a substitution-based semantics of
CSP to an environment-based transition semantics of CSP, and then transform
the environment-based transition semantics into a symbolic semantics. The basic
idea is to make the global environment into a boolean predicate. By this strategy,
we can represent the state as the pre- and post-conditions that appear in Hoare
Logic. This can be seen as a generalization of the environment by treating each
assignment of a variable to an expression (or value) as an equation stating the
variable is equal to that expression. In addition, we can treat every side-condition
in the transition semantics as a constraint and conjoin it to the boolean predicate
constraining the environment.

The HCSP semantics has been proved sound and complete with respect to
the original CSP semantics. We will state only the soundness and relative com-
pleteness theorems below.

Theorem 1 (Soundness). For all HCSP processes P , P ′, assignments ρ, en-
vironment conditions γ, γ′ and process environments S, S′ such that ρ |= γ and
ρ |= γ′, and parameter set α such that freeParams(P ) ∪ freeParams(γ) ⊆ α and

(∀p.p ∈ dom(S)⇒ freeParams(S(p)) = ∅), if (α, γ, S, P )
l−→ (α′, γ′, S′, P ′), then

sem(ρ, P )
sem(ρ,l)−→ sem(ρ, P ′).

Theorem 2 (Relative Completeness). Let P be an HCSP process, ρ be an
assignment, γ be an environment condition, S be a process environment such that
ρ |= γ, and α be a parameter set such that freeParams(P ) ∪ freeParams(γ) ⊆ α
and (∀p.p ∈ dom(S) ⇒ freeParams(S(p)) = ∅), such that sem(ρ, P )

i−→ T in
CSP semantics. Then there exist an HCSP process P ′, an assignment ρ′, an
environment condition γ′, a parameter set α′, a process environment S′, and
a label l such that i = sem(ρ′, l), ρ′|α = ρ|α, T = sem(ρ′, P ′), ρ′ |= γ′ and

(α, γ, S, P )
l−→ (α′, γ′, S′, P ′).

All the work was done in the interactive theorem prover Isabelle/HOL [2] and
can be found at http://www.cs.illinois.edu/~egunter/fms/HCSP/hcsp.tar.
gz. All details of semantics can be found in in the technical report [9].

3 Symbolic Trace Refinement

In order to describe trace refinement model checking in Section 4, we define
trace refinement in Definition 1, which is given by Roscoe in [12]. In implemen-
tations of CSP trace refinement checker, such as FDR2, they actually check the
refinement property by using some relation which is similar to trace simulation.
We list it in Definition 2. This definition is more similar to the trace simulation
definition. Current trace refinement checkers, such as FDR2, use this approach
with memoization to prove the trace refinement between two programs. In Back
and Wright’s paper [13], they actually prove that this relation implies the trace
refinement relation described in Definition 1.



Definition 1 (Trace Refinement). Q vT P = trace(P ) ⊆ trace(Q).

Definition 2 (Simulation Trace Refinement). The relation P trace refines
Q, written Q vS P , is the smallest relation satisfying the following:

• Ω vS Ω

• Q vS STOP

• If there exists Q′ such that Q
τ−→ Q′ and Q′ vS P , then Q vS P

• If for all P ′ we have P
l−→ P ′ implies

– either l = τ and Q vS P ′,
– or l 6= τ and there exists Q′ such that Q

l−→ Q′ and Q′ vS P ′,
then Q vS P

Definition 2 only works in traditional CSP semantics. In order to describe
the symbolic semantics, we need to be able to connect environment predicates
with processes. Hence, we define symbolic trace refinement in Definition 3. This
definition is actually more similar to the definition of trace simulation, but we call
it symbolic trace refinement here because it is equivalent to the simulation trace
refinement definition above. In this definition, the function η : (φ, β, α)→ (α′, φ′)
is a renaming function to rename all parameters of a given environment predicate
φ that are in the set β to new parameters that are not in the set α ∪ β, and
return the resulting environment condition φ′ and the new parameter set α′

containing all parameters in the set α and the environment condition φ′. This
function is useful in the final rule of symbolic trace refinement. In each inductive
step (βi, φi, Ti, Qi) vT (α′i, γ

′ ∧φ′i, S′, P ′) for i ∈ [1..n] in the final rule, we want
to bind the environment condition of the implementation configuration γ′ by an
extra constraint φ′i.

Definition 3 (Symbolic Trace Refinement). The relation (β, φ, T,Q) vST
(α, γ, S, P ) is the smallest relation satisfying the following:

• (β, φ, T,Ω) vST (α, γ, S,Ω)

• (β, φ, T,Q) vST (α, γ, S,STOP)

• If there exists (β′, φ′, T ′, Q′) such that (β, φ, T,Q)
τ−→ (β′, φ′, T ′, Q′) and

(β′, φ′, T ′, Q′) vST (α, γ, S, P ), then (β, φ, T,Q) vST (α, γ, S, P )

• If for all (α′, γ′, S′, P ′) we have (α, γ, S, P )
l−→ (α′, γ′, S′, P ′) implies

– either l = τ and (β, φ, T,Q) vST (α′, γ′, S′, P ′),

– or l =
√

and there exists (β′, φ′, T ′, Q′) such that (β, φ, T,Q)
√
−→ (β′, φ′, T ′, Q′)

and (β′, φ′, T ′, Q′) vST (α′, γ′, S′, P ′),

– or l = (U.V ) and there exists a natural number n, configurations (βi, φi, Ti, Qi),
parameters U ′ and V ′, parameter sets α′i and environment conditions φ′i
such that,

. (α ∪ α′ ∪
⋃n
i=1 α

′
i) ∩ (β ∪

⋃n
i=1 βi) = ∅



.
∧n
i=1((β, φ, T,Q)

(Ui.Vi)−→ (βi, φi, Ti, Qi))

.
∧n
i=1(∃ρ.ρ |= γ′ ∧ φi[U/Ui][V/Vi])

. (∃ρ′.∀c a .ρ′[U 7→ c, V 7→ a] |= γ′ ⇒
∨n
i=1 ρ

′[Ui 7→ c, Vi 7→ a] |= φi)

.
∧n
i=1((α′i, φ

′
i) = η(φi[U/Ui][V/Vi], βi, α

′))

.
∧n
i=1((βi, φi, Ti, Qi) vST (α′i, γ

′ ∧ φ′i, S′, P ′))
then (β, φ, T,Q) vST (α, γ, S, P )

The symbolic trace refinement definition has the following relation with the
original trace refinement definition.

Theorem 3 (Symbolic Trace Refinement Relation). For all HCSP config-
urations (α, γ, S, P ) and (β, φ, T,Q), assignments ρ and δ such that β ∩ α = ∅,
freeParams(P ) ∪ freeParams(γ) ⊆ α, (∀p.p ∈ dom(S) ⇒ freeParams(S(p)) =
∅), ρ |= γ and δ |= φ, we have (β, φ, T,Q) vS T (α, γ, S, P ) if, and only if
sem(δ,Q) vT sem(ρ, P ).

Proof. (Sketch) We first do an induction on rules of trace refinement to prove
the ”only if” side of the theorem. We prove this direction by using relatively
completeness described in Theorem 2. We then prove the ”if” side of the theorem
by induction on rules of symbolic trace refinement with the soundness theorem
described in Definition 1 �

4 HCSP Simulator and Model Checker

To put the theory of HCSP into practice, we have specified an HCSP simulator
with a rich mutually recursive datatype for actions and propositions in Isabelle.
OCaml code for the simulator, which we call HSim, is then extracted from the
Isabelle specification directly. The core of HSim is included with the package
for the soundness and completeness theorems. In HSim, we have limited the
propositions to quantifier-free first order logic with Presburger arithmetic in
order to maintain decidability. In doing so, we render the single-step transition
relation computable as a function generating a finite set of possibilities. We then
represent all possible traces with a lazy stream data structure supporting back-
tracking. This enables us to incrementally compute the requirements for a given
trace, which can be inspected at each step, and can be back-tracked when the
requirements are proven to be unsatisfiable. Using the HCSP semantics, we can
indefinitely delay the calculation of a specific trace using trace patterns and pre-
and post-conditions, until one trace pattern / condition is selected. At this point,
satisfiability analysis can be used to generate an instance trace, if such is desired.

In the case of the medical mediator example, we were able to use the simulator
specification in Isabelle to enumerate the possible trace patterns for the System,
and to verify that all traces satisfying each pattern-condition so enumerated
satisfy a pattern-condition of the Safety process.

In addition to HSim, we have implemented in the rewriting logic engine
Maude [3] a model checker HMC to check the trace refinement property of



HCSP programs. This implementation is a hand transcription of the Isabelle
specification of HMC. Previous model checkers for CSP, including FDR2 and
PAT, check trace refinement between two processes by explicit trace enumeration
with circularity checking. In contrast, as we did with the simulator HSim, the
model checker HMC is based on the symbolic semantics and symbolic trace
refinement described in Section 2 and 3.

Fig. 5. Algorithm Components

We describe the algorithm of HMC by breaking it into four components: the
explorer, the decider, the memoizer and the collector. The explorer is the core of
the trace refinement graph searching algorithm. It controls how we do the trace
refinement at the meta level regardless of the details of the HCSP semantics.
The decider is an auxiliary SMT solver to determine whether a next possible
move of a given HCSP configuration is valid based on the satisfiability of the
constraint in the next possible move. The memoizer controls how we determine
the one configuration is an instance of another configuration that arises during
circularity checking, while the collector controls how we collect the next possible
moves of a given HCSP configuration.

At the explorer level, our algorithm can be generalized as a four-step proce-
dure based on the definition of symbolic trace refinement described in Section 3.
We start with a pair of configurations of the implementation and specification,
two τ -labeled memoizing sets (one for the implementation and one for the spec-
ification) and a configuration-pair memoizing set for checking a pair of configu-
rations. Step One is to get the next possible moves of a given implementation
configuration and a given specification configuration by the collector. Based on
these sets of moves, we remove the inconsequential and invalid moves. A move
is inconsequential if it is a τ -labeled move that is an instance to one in the im-
plementation or specification τ -memoizing set. An invalid move is one with an
unsatisfiable environment condition. In Maude, Step One is implemented by the
Maude function verify.

Step Two is to replace all τ -labeled moves of the implementation from the
set collected in Step One by the set of non-τ -labeled moves that are reachable
by a possibly empty sequence of τ -labeled moves from the τ -labeled move being
replaced. Both the τ -labeled move being replaced and all subsequent τ -labeled
moves transitioned over in a sequence leading to a replacing non-τ -labeled move
are added to the implementation τ -memoizing set, if it is not an instance to one
already present. If it is an instance to one already present, we cut that search
branch and backtrack to look for other τ -labeled sequences. The result of Step



Two is that the all moves collected for the implementation have the label form
U.V . In Maude, the function verifyTau will handle this step.

Step Three is to check for each move of the implementation if there exists
a move of the specification that refines the given move of the implementation.
It has three operations. The first operation processes the next-moves set for the
specification generated in Step One. This operation preforms the same reduc-
tion/replacement action on τ -labeled moves of the specification as was done in
Step Two for the implementation, except that the replacement is only of a sin-
gle reachable non-τ move, rather than the full set. All τ -labeled moves in the
sequence for the one in the given next-moves set to its replacement are added to
the specification τ -memoizing set. This operation is only performed when there
do not exist any more U.V -labeled moves in the specification next-moves set. We
are repeatedly applying this operation until there is a move of the specification
with the label form U.V , or there are no more moves of the specification. In the
latter case, we answer false.

In the second operation, a move of the specification with the label U ′.V ′ and
environment condition γ′ is selected. For the given move of the implementation
with label U.V and environment condition γ, we check whether or not the formula
∀U.V.γ ⇒ γ′[U/U ′][V/V ′] is satisfiable, using the decider also implemented in
Maude. Here, we are taking advantage of our symbolic semantics for HSCP. If
one such specification move can be found, we can move onto Step Four directly.
If not, we will go to the third operation. In the third operation, we assume
that we have the given move of the implementation (U.V, α, γ, S, P ). We check
whether there is a set of next moves of the specification (U ′i .V

′
i , βi, φi, Ti, Qi) for

i = 1, . . . , n such that for each i the formula γ∧φi[U/U ′i ][V/V ′i ] is satisfiable, and
the formula ∀U V.γ ⇒

∨n
i=1 φi[U/U

′
i ][V/V

′
i ] is satisfiable. If there are such moves

of the specification, we construct the new parameter sets and new environment
conditions as (α′i, φ

′
i) = η(φi[U/U

′
i ][V/V

′
i ], βi, α) for i = 1, . . . , n, where η is the

renaming function of Section 2. We also construct the new pairs of configurations
((α′i, γ ∧ φ′i, S, P ), (βi, φi, Ti, Qi)) for i = 1, . . . , n. We then allocate Step Four
checks for each of these pairs of configurations. If there do not exist such moves
of the specification, we will answer false. Step Three is implemented as functions
verifyAction and verifyActionAux in Maude.

Step Four checks if the new input pair of implementation-specification config-
urations from Step Three is an instance of one in the current configuration-pair
memoizing set. If it is, then we answer true; otherwise, we go back to Step One to
check the new implementation-specification configuration pair with adding the
implementation-specification configuration pair into the current configuration-
pair memoizing set. In Maude, we implement this step by the function preverify.

The four-step procedure is a general framework and specification for the
symbolic graph searching algorithm. There are many ways to implement this
procedure. We implement one such transcription in Maude. It is a combination
of a breadth-first search algorithm, a depth-first search algorithm and circularity
checking.



The memoizer checks when an element is an instance of an element in a given
memoizing set. The memoizer can be easily implemented by checking whether an
element is an instance of a specific element in a set except that we need to define
instance for configurations and extend to configuration pair with covariance in
the first component and contravariance in the second.

Definition 4 (Configuration Instance). We say that ((α, γ, S, P ) is an in-
stance of (α′, γ′, S′, P ′)) and write (α, γ, S, P ) → (α′, γ′, S′, P ′) if there ex-
ists renaming functions ζ for parameters and ξ for process variables, such that
P = ζ(ξ(Q)), and for all p as process variable, S(p) = ξ(S′(ξ−1(p))) and
γ ⇒ ζ(γ′). A configuration pair ((α, γ, S, P ), (β, φ, T,Q)) is an instance of
((α′, γ′, S′, P ′), (β′, φ′, T ′, Q′)) if (α, γ, S, P )→ (α′, γ′, S′, P ′) and (β′, φ′, T ′, Q′)→
(β, φ, T,Q).

In the implementation in Maude, rather than using a SMT solver to check
the formula (γ ⇒ ζ(γ′)) in Definition 4, we do a weaker syntactic check on
the formula. This implementation reduces the heavy use of the SMT solver and
might lead to a searching on unnecessary branches, but it will not lead to a false
result.

At the collector level, we first implement our HCSP rules in Maude, then we
collect all next possible moves of an HCSP configuration by unifying the HCSP
configuration with the set of symbolic semantic rules and applying all possible
rules on the configuration and put the results in a set. There is a central problem
in the implementation of the collector: the structures of an environment condi-
tion in an HCSP configuration. we revisit them by borrowing an idea from the
Union Find algorithm and Binary decision diagrams [14] in the implementation
of HMC. In the HCSP semantics, we observe that at each move we only add a
new constraint conjunctively to the current pre-condition. As a result, when we
evaluate an HCSP process long enough, the condition of the environment gets
quite large. Since SMT solvers operate in time exponential in the size o fthe
input problem, it is critical to keep the size of the problems passed to them as
small as possible. The collector serves to accomplish this.

Observation of executing CSP programs indicates that any given conjunct
of the environment condition typically shares parameters with only a very few
other individual conjuncts. We say two predicates satisfy the parameter relation
if they share one or more parameters in common. The collector represents the
environment condition as a set of sets of individual conjuncts, where each set of
individual conjuncts is a connected component of the parameter relation. When
a next move is calculated, the new conjunct it contributes to the environment
condition is merged with the sets of conjuncts with which it satisfies the pa-
rameter relation, forming a new connected component. Since each environment
condition is checked for satisfiability, checking the new environment condition
can be done by checking satisfiability of just the connected component of the
new conjunct contributed by the move. This typically is a much smaller formula
to pass to the SMT solver than the entirety of the new environment condition.

After we have confirmed that the connected component of the new conjunct
is satisfiable, the collector is also used to reduce the environment condition it-



self. This is done by calculating the parameters still present in the process of
the next move, and removing from the new environment condition all those con-
nected components whose parameters are disjoint from the process parameters.
Subsequent moves of a process cannot constraint any previously existing pa-
rameters not present in the process. Therefore, given that the current connected
components of the environment condition are satisfiable, the satisfiability of sub-
sequent environment conditions is not impacted by the connected components
whose parameters are disjoint from the process parameters.

5 Examples and Experiment

Clicker(c, r) =
l

s:s>0∧
s≤N

K.r.c.s→ Clicker(c, r)

Broadcast(r) =
m

c:true

K.r.c?s : s > 0 ∧ s ≤ N → Out.r.s→ Broadcast(r)

Room(r) = (Clicker(c1r, r)|[{}]|Clicker(c2r, r))|[{k.x|∃c s. hd(k) = K}]|Broadcast(r)

Center = Room(1)|[{}]|Room(2)

ATM1 = Incard?c : (M < c < N)→ PIN.c→ Req?n : (99 < n)→
l

x:x=n∧bx<2000

Dispense.x→ Outcard.c→ ATM1

ATM2 = Incard?c : (M < c < N)→ PIN.c→ Req?n : (99 < n)→
l

x:x=n∧bx<2000

Dispense.x→ Outcard.c→ ATM2 u (Refuse.1→ ATM2 u Outcard.c→ ATM2)

Fig. 6. Examples

HSim keeps track of the constraints of data in an HCSP process, while tradi-
tional CSP simulator, such as ProBE, lists values of data in a CSP process. The
difference between two kinds of simulators is large enough without doing experi-
ment. In this section, we focus on the experiment between HMC and traditional
trace refinement model checker.

Besides the small examples in Fig. 6 and the medical mediator example from
Gunter et al. [4], there are many other real implementations that can benefit
from modeling in the HCSP system. Generally speaking, every real model with
several users trying to access one or more copies of a very large database can
benefit from the HCSP system. A song broadcasting system and an ATM are
two such small examples, which are used to show some systems which cannot be
model checked in current CSP model checkers and can be benefited from HMC.

Song broadcasting systems are used in entertainment businesses such as dis-
cos and karaokes to allow people to select songs from a large database. Such sys-
tems typically have a large collection of songs; a collection in excess of 200,000
would not be uncommon. A typical karaoke bar has more than twenty rooms for
separate entertainment. Typically, each room has two remote clickers for select-
ing the next song to be played. After a user selects a song, the remote clicker
will send the song selection to the song broadcasting system, which will play it



in the room. Since only one song can be broadcast at a time, if two people send
selections simultaneously, only one signal will be honored immediately, while the
other one will be delayed for later action. We model the karaoke center in CSP
in Figure 6. For simplicity, we assume the Karaoke center only has two rooms.

In Fig. 6, the capital letter N refers to an arbitrary number to represent the
size of the database that contains all songs in the song broadcasting system.
Typically, we know that the number N is a large number, but we do not know
exactly how large it is. In order to verify properties in the system, such as safety
and deadlock-freedom, it is better to leave the number N to be unspecified. We
will set the number N to be 500 and 500,000 as test cases in the experiment.

Likewise, we implement two ATMs in Fig. 6. The two ATM processes are to
describe the procedures of a machine that is receiving commands from humans
and responding to them. One can easily see that ATM1 can refine ATM2 but
not vice versa. We will test positive trace refinement cases of ATM1 to ATM2 as
well as negative trace refinement cases of ATM2 to ATM1. In these ATMs, the
numbers N and M specify the range of the debit or credit cards that can be
read. Typically, a debit or credit card will have sixteen digits. We test the cases
when the numbers N and M are one, four and sixteen digits.

Programs Specifications FDR2 HMC
Process A Process A < 2 secs < 2 secs
Process B Process B N/A < 2 secs
Process C Process C N/A < 2 secs
Process C Process D N/A < 2 secs
ATM1 one digit ATM2 one digit 45 secs < 2 secs
ATM1 four digits ATM2 four digits > 12 hours < 2 secs
ATM1 16 digits ATM2 16 digits N/A < 2 secs
ATM2 one digit ATM1 one digit < 2 secs < 2 sec
ATM2 four digits ATM1 four digits > 12 hours
ATM2 16 digits ATM1 16 digits N/A < 2 secs
Karaoke 5 Karaoke 5 < 2 secs 37 secs
Karaoke 500 Karaoke 500 > 12 hours 37 secs
Karaoke 500,000 Karaoke 500,000 N/A 37 secs
Medical one nurse Safety one nurse 55 mins 3.6 hours
Medical two nurses Safety two nurses N/A 3.8 hours

Fig. 7. Experiment Results

We have compared the efficiencies of FDR2 and HMC in some programs.
The experiment was run on an Intel core i7 machine with eight gigabytes of
memory and a Ubuntu 13.04 system. The testing programs are processes A, B,
C and D from Section 1 and the ATMs with N and M being one, four and
sixteen digits. We have tested positive trace refinement cases of ATM2 to ATM1
and negative ones of ATM1 to ATM2. In addition, we have tested the Karaoke
center examples when N is equal to 500 and 500,000; and the medical mediator
examples in which there are two mediators, one nurse, three patients and three
devices and when there are two mediators, two nurses, three patients and three
devices. The results can be found in Figure 7.

From the table, we can see that HMC can finish all the jobs, while FDR2
fails to execute some programs. In most cases, HMC is more efficient at verifying
the trace refinement property of programs than is FDR2. In addition, FDR2 is



very sensitive to the size of the input data, and it cannot recognize the similarity
of different programs. It succeeds in model checking some programs, but fails
when we change them a little bit. For example, FDR2 can execute process A
completely, but fails to even read processes C and D. The medical mediator is
a more representative example. Because of the sensitivity of FDR2 with respect
to the input data, it can finish the job when there is only one nurse, but not
when there are two. On the other hand, even though HMC needs a longer time
to finish a job when the input data is small, it can successfully model check
the trace refinement property no matter how big the input data gets replicated
choice operators.

6 Related Work

Currently, there are several existing CSP simulators and model checkers based
on the original CSP transition semantics. CSPM [8] gives a standard CSP syn-
tax and semantics in machine readable form, introduced by Bryan Scattergood,
which is based on the transition semantics introduced by Brookes and Roscoe
[10]. It provides a standard for many CSP tools, including FDR2 by Formal Sys-
tems (Europe) Ltd., the industry standard for CSP model checkers [7]. ProBE
[15] is a simulator created by the same group, which simulates a CSP process
by listing all the actions and states one by one as a tree structure [15]. Jun
Sun et al. [16] merged partial order reduction with the trace refinement model
checking in the tool called PAT. CSP-Prover is a theorem proving tool built on
top of Isabelle [17]. It provides a denotational semantics of CSP in Higher-Order
Logic. CSPsim [18] is another simulator based on the CSPM standard. Its ma-
jor innovation is the use of “lazy evaluation”. The basic idea of CSPsim is to
keep track of all the current actions, then compare them with the actions of the
outside world and only select the possible executable actions for the very next
step [18]. The phrase “lazy evaluation” refers to a pre-processing step in which
CSPsim selects some processes that contain fewer actions and generates some
conditions in advance. After that, CSPsim evaluates the whole program based
on these conditions.

These tools use the traditional view of actions as single elements, and tend
to generate a large number of states when comparing multiple possibilities for
actions. Additionally they treat some operators, especially replicated operators,
as macros, and hence, even though it is possible for some tools (CSP-Prover) to
analyze some complicated programs, such as medical mediator, by the theorem
proving setting, it is impossible for these tools to generate traces when the repli-
cated set is infinite. The medical mediator project by Gunter et al. [4] provides
an example of the advantages of HCSP over CSP-semantics based tools. The
main goal of the medical mediator project is to prove that the set of traces of
the process System|[Vis]|Given is a subset of the traces of Safety |[Vis]|Given,
where Vis is a set defined as {y.(∃n d m x. y = RFIDChann,md .x) ∨ (∃m z. y =
EHRBEChm .z)}. This requires exploring all possible traces generated by the
System process. Tools based on the original CSP semantics, such as FDR2, fail



when dealing with large or unbounded sets. For example, the Med process as
given does not put any restrictions on the sets of values that may be received
over various channels. The simulator and model checker we have built based on
HCSP semantics benefits from being able to handle such large or unbounded
sets uniformly as single actions, thus avoiding state explosion problems.

Along the way we are writting our paper, FDR3 comes out [19]. FDR3 devel-
ops a parallelized algorithm for model checking trace refinement property over
FDR2. When we use FDR3 to test our programs, the performence is better than
the performence of FDR2. However, it still cannot catch the behavior of infinite
sets in replicated choice operators. For example, when we test the process C and
D in Figure 1, FDR3 fails to terminate.

In terms of symbolic semantics, there are several existing symbolic semantics
for process algebras, mainly, serving process algebras having similar structure
to the Π-calculus. Early work of Hennessy and Lin [20] provides a framework
of symbolic semantics for value-passing process algebras. Later, Sangiorgi ap-
plied this symbolic semantics idea to the Π-calculus [21]. Bonchi and Montanari
revisited the symbolic semantics of the Π-calculus [22], providing a symbolic
transition semantics for the Π-calculus by including the predicate environment
condition as a part of a label in a transition system. In their symbolic transi-
tion semantics, they only discovered the relation in the parallel operator in the
Π-calculus.

LOTOS is a kind of process algebras that contains features from both the
Π-calculus and CSP. Its parallel operator is similar to that of CSP. The parallel
operator contains a middle set to restrict the communication actions between
the left and right processes. Calder and Shankland provided a symbolic seman-
tics for LOTOS [23]. As in the work done by Bonchi and Montanari, Calder and
Shankland both represented their condition in the label position instead of di-
viding it into pre- and post-conditions. Pugliese, Tiezzi and Yoshida proposed a
symbolic semantics for service-oriented computing COWS that is similar to the
Π-calculus [24]. For the works above providing symbolic transition semantics,
the condition is placed in the label instead of dividing it into pre- and post-
conditions, which makes their symbolic semantics fail to answer differently for
different input environments for a same program. In many cases, it is necessary
to consider different initial environment conditions and these different conditions
lead to different results in CSP programs.

mCRL2 is a process algebra designed to execute symbolically [25]. It is a
well-known π-calculus like generic language with symbolic transition semantics
to model point-to-point communication. They claimed that people can catch
the behavior of infinite set in their choice summation operator. However, the set
needs to be determined statically. It means that it cannot catch the behavior
similar to process C in Figure 1. In addition, even though mCRL2 claimed the
language is generic and we can translate other process algebra into mCRL2,
it is very hard for mCRL2 to model a broadcast communication system with
point-to-group communication, because they need to know the total number of
processes in the universe and send enough messages to each individual process in



a group. However, knowing total number of processes is very hard in some cases.
For example, if we want to model a group of people who are in a conference reach
a consensus at the same time. It is almost impossible for mCRL2 to model this
procedure. On the other hand, we can model this procedure easily by using a
replicated choice operator to select the total number of people in the conference,
then using a replicated parallel operator with consensus value in between to
model the fact that all people communicate with each other by the consensus
value.

7 Conclusion and Future Work

In this paper we have presented a new semantics for CSP, the HCSP semantics.
HSCP provides an alternative way to model CSP processes by viewing transitions
as bundles of the original transitions, where all transitions in the bundle can be
described by a uniform property derived from the process. By this translation,
we can allow HCSP-based tools to run some CSP programs which are not able
to run in the original CSP-based tools. We have shown the HCSP semantics to
be equivalent to the original CSP transition semantics. We have also presented
an HCSP-based simulator, which is extracted directly from the Isabelle code for
the HCSP semantics. We show an HCSP-based model checker to check the trace
refinement of CSP programs and show that the model checker is very efficient
to deal with some CSP programs by experiment. By using several examples
in the experiment, we show that the HCSP semantics based trace refinement
model checker can overcome some difficulties that traditional CSP-semantics-
based tools cannot handle.

For further study, we are interested in adding semantics to deal with the repli-
cated parallel operators in HCSP and use it in the model checker and extending
our trace refinement model checker to check trace failure and failure-divergence
refinement properties of CSP programs. We believe that it will significantly in-
crease the efficiency in the model checker to answer trace refinement problem.
We also want to generalize our framework to deal with other kinds of transition
semantics.
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