
Verifying Dynamic Race Detection

William Mansky† Yuanfeng Peng∗ Steve Zdancewic∗ Joseph Devietti∗
†Princeton University ∗University of Pennsylvania

wmansky@cs.princeton.edu, yuanfeng@cis.upenn.edu, stevez@cis.upenn.edu, devietti@cis.upenn.edu

Abstract
Writing race-free concurrent code is notoriously difficult,
and races can result in bugs that are difficult to isolate and
reproduce. Dynamic race detection can catch races that can-
not (easily) be detected statically. One approach to dynamic
race detection is to instrument the potentially racy code with
operations that store and compare metadata, where the meta-
data implements some known race detection algorithm (e.g.
vector-clock race detection). In this paper, we describe the
process of formally verifying several algorithms for dynamic
race detection. We then turn to implementations, laying out
an instrumentation pass for race detection in a simple lan-
guage and presenting a mechanized formal proof of its cor-
rectness: all races in a program will be caught by the instru-
mentation, and all races detected by the instrumentation are
possible in the original program.

1. Introduction
Multicore processors have steadily invaded a broad swath
of the computing ecosystem in everything from datacenters
to smart watches. Writing multithreaded code for such plat-
forms can bring good performance but also a host of pro-
grammability challenges. One of the key challenges is deal-
ing with data races, as the presence of a data race introduces
non-sequentially-consistent [10] and in some cases unde-
fined [1] behavior into programs, making program seman-
tics very difficult to understand. Races are not detected by
default in current language runtimes, though there are many
systems that provide sound and complete data race detection
via dynamic analysis [5, 6, 18] to help programmers detect
and remove data races from their programs.

While these analyses have been proven correct, such
proofs have two main shortcomings: they are proofs of the
algorithms, not of the implementations, and they are pa-
per proofs instead of machine-checked proofs. As a conse-

[Copyright notice will appear here once ’preprint’ option is removed.]

quence, it is possible that a race detector does not faithfully
implement its algorithm, or that the algorithm itself is not
fully correct. Moreover, it still remains to be shown that the
implementation, often done via code instrumentation, does
not itself introduce or mask races, and that in the absence of
races, the program’s behavior is unchanged.

We seek to rectify these concerns and place dynamic race
detection on a provably correct foundation for the first time.
We begin by formalizing the proof of the classic vector-clock
race detection algorithm [4, 11] using the Coq interactive
theorem prover [17].1 Having established the correctness of
this base algorithm, we extend our work in two dimensions.

We first explore the algorithmic dimension, formally es-
tablishing the correctness of the FASTTRACK algorithm [5].
FASTTRACK includes several significant optimizations over
the base vector-clock algorithm. We find that the correctness
of FASTTRACK can be demonstrated by proving its equiva-
lence to the vector-clock algorithm, which is a more straight-
forward process than demonstrating correctness in isolation,
and likely lends itself to formalizing additional algorithms
with reduced effort. We also verify an extension of the base
vector-clock algorithm that allows multiple joins to the same
thread, as modern threading packages do.

We next explore the implementation dimension, for-
mally establishing in Coq the correctness of an implemen-
tation of vector-clock race detection on a simple imperative
language with threads. Given a program written in our lan-
guage, our race detector adds instrumentation, written in the
same language, to perform vector-clock race detection on the
program. We demonstrate that this instrumentation correctly
implements the vector-clock algorithm, again leveraging our
previous verification effort. We also prove that our imple-
mentation preserves the program’s semantics in the absence
of races. This verification is much more difficult than prov-
ing the algorithm correct, since it must deal directly with
the details of the implementation language and the concur-
rency model; we must precisely define the relation between
uninstrumented and instrumented memory states, and prove
noninterference of the code added by the instrumentation.

To the best of our knowledge, ours is the first work to
adopt formal verification for either race detection algorithms
or their implementations. Moreover, we believe our general

1 All proofs are fully machine-checked in Coq, and the development has
been submitted with the paper.

1 2016/10/12



approach may be useful as a template for verifying a broad
range of dynamic analyses, especially in the challenging
domain of analyses for parallel programs. Verification helps
ensure that debugging tools are themselves free from bugs.

This paper makes the following contributions:

• We present a method for verifying a dynamic data race
detector from the algorithmic level to its implementation.
• We give the first machine-checked proofs of the vector-

clock and FASTTRACK race-detection algorithms.
• We describe the first verified implementation of vector-

clock race detection on a simple, multithreaded language.

Along the way, we discovered that one lemma in the paper
proof of FASTTRACK was too strong, and noticed a minor
discrepancy between the FASTTRACK algorithm and its im-
plementation. In this case the effects were benign, but more
generally, this highlights the value of formal verification for
obtaining correct algorithms and implementations.

The remainder of this paper is organized as follows. In
Section 2, we lay out our approach to verifying dynamic
race detection algorithms and their implementations. In Sec-
tion 3, we state and verify several algorithms for race de-
tection. In Sections 4 and 5, we describe an instrumentation
pass that implements dynamic race detection, and explain
the verification process in detail. We compare our approach
to related work in Section 7, and evaluate our results and
describe future work in Section 8.

2. Proof Strategy
Our goal for each algorithm and program transformation
presented in this paper is to prove that it implements sound
and complete race detection, i.e., that it raises an alarm in
all racy executions and only racy executions. However, as
much as possible, we prefer not to do this by referring back
to the base definition of racy executions. We begin by stating
and proving correctness of a simple vector-clock race detec-
tion algorithm, by direct relation to the definition of a race.
We then prove further results—the correctness of a more so-
phisticated algorithm, and of an instrumentation pass meant
to implement the simple algorithm—by relating them to the
verified base algorithm. We may think of this hierarchy in
terms of specifications and refinement: we begin by prov-
ing that the base algorithm refines the abstract specification
of race detection, and then use it in turn as a specification
refined by more complex or detailed mechanisms. This ap-
proach is modular and avoids duplicate proof effort, but it
also serves as further validation of the base vector-clock al-
gorithm: by showing that it is two-sided, that is, that it both
implements a higher-level specification of its desired behav-
ior and is implemented by more concrete systems, we gain
confidence that it is correctly stated (and not vacuous).

Our approach to showing that an instrumentation pass im-
plements the vector-clock algorithm breaks down into sev-
eral steps. We begin by defining the semantics of a target

language, labeled with the abstract race detection operations
produced by each step. This means that from each execution
of an uninstrumented program, we can use the base algo-
rithm to determine the behavior we would have observed if
the program was correctly instrumented. Next, we define our
instrumentation pass, and also write a bigger-step semantics
for instrumented programs in which an instruction executes
together with its instrumentation in a single step. This strat-
egy is analogous to that used in other proof efforts [13],
and makes it easier to directly relate executions of an in-
strumented program to executions of the original program.
Given the bigger-step semantics, the proof of correctness
of the instrumentation then breaks down into two parts: a
proof of bisimulation between the bigger-step semantics and
the “would have observed” semantics of the uninstrumented
program, and a proof that the bigger-step semantics com-
pletely captures the possible behaviors of any instrumented
program. This approach has potential applications beyond
race detection: we believe that it could be applied to sim-
plify the verification of any kind of instrumentation for dy-
namic checks, including memory safety and atomicity vi-
olation checking. The approach is particularly useful when
verifying instrumentation of concurrent programs, since we
are able to isolate all reasoning about interference between
threads in the latter half of the third step—characterizing the
possible behaviors of the instrumented program—and other-
wise reason more or less sequentially.

3. Race Detection Algorithms
We begin by reviewing the classic vector-clock race detec-
tion algorithm [4, 11], which we call VECTORCLOCK, and
briefly describing its verification in Coq. We then turn to
the FASTTRACK [5] algorithm and its verification both by
bisimulation with VECTORCLOCK and by direct proof, fol-
lowed by the verification of a variant of VECTORCLOCK that
handles multiple joins to the same thread.

3.1 Defining Data Races
Data races are formally defined in terms of a happens-
before relation <hb, a partial order over events in a program
trace [7]. Events consist of memory operations rd(t, x) and
wr(t, x) where a thread t reads or writes a memory location
x, lock operations acq(t,m) and rel(t,m) where a thread
t acquires or releases a lock m, fork(t, u) where a thread
t creates a new thread u, and join(t, u) where a thread t
joins with a thread u. Given events a and b, we say a hap-
pens before b (and b happens after a), written a <hb b, if:
(1) a precedes b in program order in the same thread; or
(2) a precedes b in synchronization order <sw, e.g., if a is
rel(t,m) and b is acq(u,m); or (3) (a, b) is in the transitive
closure of program order and synchronization order. Two
events not ordered by happens-before are concurrent. Two
memory accesses to the same location form a data race if
they are concurrent and at least one is a write.

2 2016/10/12



ACQUIRE
C′ = C[t := Ct t Lm]

(C,L,R,W )
acq(t,m)
=====⇒ (C′, L,R,W )

RELEASE

L′ = L[m := Ct]
C′ = C[t := inct(Ct)]

(C,L,R,W )
rel(t,m)
=====⇒ (C′, L′, R,W )

FORK
C′ = C[u := Cu t Ct, t := inct(Ct)]

(C,L,R,W )
fork(t,u)
======⇒ (C′, L,R,W )

JOIN
C′ = C[t := Ct t Cu, u := incu(Cu)]

(C,L,R,W )
join(t,u)
======⇒ (C′, L,R,W )

READ

Wx v Ct

R′ = R[x := Rx[t := Ct(t)]]

(C,L,R,W )
rd(t,x)
====⇒ (C,L,R′,W )

READNOCHANGE
Rx(t) = Ct(t)

(C,L,R,W )
rd(t,x)
====⇒ (C,L,R,W )

WRITE

Rx v Ct Wx v Ct

W ′ = W [x := Wx[t := Ct(t)]]

(C,L,R,W )
wr(t,x)
=====⇒ (C,L,R,W ′)

WRITENOCHANGE
Wx(t) = Ct(t)

(C,L,R,W )
wr(t,x)
=====⇒ (C,L,R,W )

Figure 1. VECTORCLOCK operational semantics

3.2 Vector-Clock Race Detection
One common algorithm for dynamic race detection is to
use vector clocks to track the happens-before relation during
execution [4, 11]. A vector clock V stores one (nonnegative)
integer logical clock per thread; we write V (t) for the data
associated with thread t in clock V .

There are three key operations on vector clocks. Union is
the element-wise maximum of two vector clocks: V1 tV2 =
V3 s.t. ∀t. V3(t) = max(V1(t), V2(t)). Comparison is the
element-wise comparison of two vector clocks: Va v Vb
is defined to mean ∀t. Va(t) ≤ Vb(t). Finally, increment
increases a single component of a vector clock, defined as
inct(V ) = λu. if u = t then V (u) + 1 else V (u).

The state of a vector-clock race detector is a tuple
(C,L,R,W ) of collections of vector clocks, where:

• Vector clock Ct stores the last time in each thread that
happens before thread t’s current logical time.
• Vector clock Lm stores the last time in each thread that

happens before the last release of lock m.
• Vector clock Rx stores the time of each thread’s last read

of location x.
• Vector clock Wx stores the time of each thread’s last

write to location x.

Initially, all L, R, and W vector clocks are set to ⊥V ,
where ∀t . ⊥V (t) = 0. Each thread t’s initial vector clock is
Ct, where Ct(t) = 1 and ∀u 6= t . Ct(u) = 0.

VECTORCLOCK’s operational semantics are presented in
Figure 1. Each rule has the form S

a
=⇒ S′, meaning that when

the current vector clock state is S and the next event is a,
the next vector clock state is S′. When a thread t acquires
a lock m (the ACQUIRE rule) we update Ct to Ct t Lm.
By acquiring lock m, thread t has synchronized with all
events that happen before the last release of m, so all these
events happen before all subsequent events in t. When t
releases a lock m (the RELEASE rule), we update Lm to Ct,
capturing all events that happen before this release in the
lock. We then increment t’s entry in its own vector clock Ct

to ensure that subsequent events in t do not appear to happen
before the release t just performed. The FORK and JOIN
rules are similar to RELEASE and ACQUIRE, respectively.
The increment incu(Cu) in JOIN is needed to preserve the
invariant that Cu(u), thread u’s entry for itself, is always
higher than any other thread’s entry for u.

When t reads a location x (the READ rule), we check if
Wx v Ct. If this check fails, there is a previous write to x
that did not happen before this read, so there is a data race.
(Note that the algorithm is considered to detect a race when
it is stuck, that is, when there is no rule that can be applied for
the next operation; when a state σ is stuck on an operation
o, we write σ 6 o=⇒.) Otherwise, we set t’s entry in Rx to t’s
current logical clock, Ct(t). It often arises that t will read
the same location repeatedly without an intervening change
in its own clock value Ct(t). The READNOCHANGE rule
covers this case, in which no metadata updates are necessary.

Writes operate similarly to reads, with an additional
check in the WRITE rule that Rx v Ct to ensure that all pre-
vious reads of x are well-ordered before the current write.
This is not necessary in the READ case because two concur-
rent reads are not considered to race.

3.2.1 Correctness
Correctness for dynamic race detection is phrased in terms
of soundness and completeness. Soundness means that if
the algorithm runs to completion, then there was no race in
the program trace; completeness means that given a trace
without races, the algorithm does not get stuck.

Theorem 1. VECTORCLOCK is sound and complete.

The soundness and completeness of VECTORCLOCK fol-
lows from the fact that the v relation between vector clocks
precisely models the happens-before relation. Our Coq for-
malization follows the proof outline given in the presenta-
tion of FASTTRACK [5] (with the change described in Sec-
tion 3.3.2), which can be straightforwardly translated into
Coq. The main invariant of the algorithm is that Ct(t) >
Cu(t), that is, each thread always has a higher timestamp for

3 2016/10/12



READSAMEEPOCH
Rx = E(t)

(C,L,R,W)
rd(t,x)
====⇒ (C,L,R,W)

READEXCLUSIVE

Rx ∈ Epoch
Rx � Ct Wx � Ct

R′ = R[x := E(t)]

(C,L,R,W)
rd(t,x)
====⇒ (C,L,R′,W)

READSHARE

Wx � Ct
Rx = c@u

V = ⊥V [t := Ct(t), u := c]
R′ = R[x := V ]

(C,L,R,W)
rd(t,x)
====⇒ (C,L,R′,W)

READSHARED

Rx ∈ Vector Clock
Wx � Ct

R′ = R[x := Rx[t := Ct(t)]]

(C,L,R,W)
rd(t,x)
====⇒ (C,L,R′,W)

WRITESAMEEPOCH
Wx = E(t)

(C,L,R,W)
wr(t,x)
=====⇒ (C,L,R,W)

WRITEEXCLUSIVE

Rx ∈ Epoch
Rx � Ct Wx � Ct
W ′ =W[x := E(t)]

(C,L,R,W)
wr(t,x)
=====⇒ (C,L,R,W ′)

WRITESHARED

Rx ∈ Vector Clock
Rx v Ct Wx � Ct
W ′ =W[x := E(t)]
R′ = R[x := ⊥e]

(C,L,R,W)
wr(t,x)
=====⇒ (C,L,R′,W ′)

Figure 2. FASTTRACK operational semantics. FORK, JOIN, ACQUIRE and RELEASE are identical to VECTORCLOCK.

itself than any other thread has for it. This guarantees that
no operation by a thread t can be seen by another thread u
(without detecting a race) until t has synchronized with u.

3.3 FASTTRACK

The FASTTRACK algorithm [5] leverages the observation
that, by the definition of a data race, all writes to a location
must be totally ordered in race-free traces. FASTTRACK
accordingly adopts a more sophisticated representation of
vector clocks to save space and time. Epochs can often
be used in place of vector clocks; an epoch c@t holds a
timestamp for just one thread, and is treated as a vector clock
that is c for t and 0 for every thread other than t:

(c@t)(u) =

{
c if t = u
0 otherwise

Because epochs have a single non-zero entry, an epoch
can be compared with a vector clock, or another epoch, in
O(1) time using the � operator. We say that c@t � V (and
similarly c@t � e) when (c@t)(u) ≤ V (u) for all u, which
occurs exactly when c ≤ V (t). We write ⊥e for a minimal
epoch at an arbitrary thread, 0@t0.

A FASTTRACK analysis state is a tuple (C,L,R,W)
just as in VECTORCLOCK, except that Rx may be ei-
ther a vector clock or an epoch, and Wx is always an
epoch. FASTTRACK’s initial analysis state is the tuple
(λt. inct(⊥V ), λl.⊥V , λx.⊥e, λx.⊥e). Each thread ini-
tially has an empty vector clock with its own entry incre-
mented, all locks have empty vector clocks, and all mem-
ory locations have empty read and write epochs. The FAST-
TRACK operational semantics are presented in Figure 2 (in
which we useE(t) to mean Ct(t)@t). The READ and WRITE
rules are split into several cases, as Rx transitions between
an epoch and a full vector clock. When a write occurs to
a location x for which Rx is a vector clock, Rx is set to

an empty epoch ⊥e; conversely, when multiple concurrent
reads to x occur,Rx is inflated to a full vector clock.

3.3.1 Proof by Bisimulation
Flanagan and Freund justify the optimizations of FAST-
TRACK by proving that the v relation on vector clocks still
precisely captures the happens-before relation. However, as
part of the proof strategy outlined in Section 2, we take
a different approach, proving that the transition system of
FASTTRACK is bisimilar to that of VECTORCLOCK. Since
we have already verified VECTORCLOCK, this is sufficient
to guarantee that FASTTRACK is sound and complete. In this
section, we describe our novel bisimulation proof of FAST-
TRACK’s correctness; in the following section, we describe
our mechanization of the paper proof.

Intuitively, the metadata optimizations of FASTTRACK
are safe to perform because the reduced metadata still cap-
tures the same happens-before relationships, which means
that the same v relationships hold between corresponding
state components. Thus, we need only present a relation be-
tween FASTTRACK states and full vector clock states that
captures this correspondence in order to prove a bisimulation
between the two systems. The C and L components should
remain unchanged. To characterize the expected semantics
of epochs, we define the following emulation relation:

Definition 1. An epoch e emulates a vector clock V for
another vector clock V ′ if e � V ′ implies that V v V ′. An
epoch e emulates V in a state (C,L,R,W ) if ∀u. e emulates
V for Cu and ∀m. e emulates V for Lm.

In FASTTRACK, when a write vector clock Wx is col-
lapsed to an epoch c@t, it is precisely because Wx(t) =
c and c@t emulates Wx. Figure 3 shows a simple pro-
gram with two threads that illustrates write epoch emula-
tion. VECTORCLOCK’s Wx retains information about both
threads’ writes, but because t0’s write happens before t1’s

4 2016/10/12



t0 t1 VC Wx FTWx

write x [1,0] 1@t0
rel m ” ”

acq m ” ”
write x [1,1] 1@t1

Figure 3. An example of how FASTTRACK’s write epoch
emulates the conventional write vector clock.

VC FT
t0 Rx Wx Rx Wx

read x [1,1] [0,0] [1,1] ⊥e

write x ” [1,0] ⊥e 1@t0

Figure 4. An example of how FASTTRACK’s write epoch
emulates the conventional read vector clock.

t0 t1 t2 VC Rx FTRx

read x [1,0,0] 1@t0
rel m ” ”

acq m ” ”
read x [1,1,0] 1@t1

read x [1,1,1] [0,1,1]

Figure 5. An example of how FASTTRACK’s read vector
clock partially emulates the conventional read vector clock.

write, the FASTTRACK write epoch retains information only
about t1’s write. If t1’s write happens before some vector
clock V ′, then t0’s write must happen before V ′ as well, so
the write epoch emulates the write vector clock.

The relation for read metadata is more complicated,
because there are more ways in which read data may be
dropped. The WRITESHARED rule resets read metadata to
an empty epoch, erasing all previous values, and as long as
Rx remains an epoch, any information about previous reads
is lost. This has two effects on the simulation relation. First,
we must make a special allowance for the case in which the
read metadata is empty; in this case, it is the write epoch
that emulates the original read vector clock. Figure 4 shows
an example program illustrating this case. If the location x
is read by thread t1, then read by t0 (as shown), t0’s write
will trigger the WRITESHARED rule, which clears FAST-
TRACK’s Rx metadata, losing track of the reads. However,
because the reads happen before t0’s write, FASTTRACK’s
write epoch still emulates the conventional Rx vector clock:
if t0’s write happens before some vector clock V ′ the (lost)
reads happen before V ′ as well.

The second effect is that even when the FASTTRACK state
holds a vector clock in Rx, that vector clock may contain
some 0 values for threads that have in fact read x. In effect,
because FASTTRACK read vector clocks are always derived
from epochs, they carry forward a partial emulation relation,
in which one component emulates all the relationships on
zeroed values. Figure 5 shows an example program where
each thread performs a read. t0’s read happens before t1’s

read, causing FASTTRACK to discard t0’s read. t2’s read is
concurrent with both other reads, so it forces FASTTRACK’s
Rx into vector clock format. The Rx entry for t1 emulates
the entry for t0, since if t1’s read happens before some
vector clock V ′, t0’s read must happen before V ′ as well.
We capture this relation as follows:

Definition 2. A vector clock V0 partially emulates a vector
clock V for another vector clock V ′ if there is some thread t
such that:

• for all u such that V0(u) = 0, V0(t) ≤ V ′(t) implies that
V (u) ≤ V ′(u)
• for all u such that V0(u) 6= 0, V0(u) ≤ V ′(u) implies

that V (u) ≤ V ′(u)

A vector clock V0 partially emulates a vector clock V in a
state (C,L,R,W ) if ∀u. V0 partially emulates V for Cu
and ∀m. V0 partially emulates V for Lm.

We can now state the full simulation relation between
VECTORCLOCK and FASTTRACK states.

Definition 3. A VECTORCLOCK state (C,L,R,W ) and
a FASTTRACK state (C′,L′,R′,W ′) are in the relation ∼
when C′ = C, L′ = L, and for every location x:

• ifW ′x = c@t, then Wx(t) = c and c@t emulates Wx

• R′x(t) ≤ Rx(t) for all t
• ifR′x = ⊥e, thenW ′x emulates Rx
• ifR′x = c@t, then Rx(t) = c and c@t emulates Rx
• ifR′x = V , then V partially emulates Rx

Lemma 1. The relation ∼ is a bisimulation.

Proof. In each direction, the relation ∼ is preserved by cor-
responding steps in the two systems, which we show by case
analysis on the rule applied.

Theorem 2. FASTTRACK is sound and complete.

Proof. For each successful execution of FASTTRACK, there
is a successful execution of VECTORCLOCK on the same
trace; by Theorem 1 the trace is race-free. Conversely, for
each race-free trace, there is a successful execution of VEC-
TORCLOCK, so there is also one using FASTTRACK.

While the statement of the simulation relation is compli-
cated, once it is correctly stated, the proof itself is reduced to
proving that various ≤ relationships are preserved by math-
ematical operations on vector clocks.

3.3.2 Direct Proof
As a baseline for comparison, we formalized the original
proof of FASTTRACK’s correctness in Coq as well, directly
relating the v relation on vector clocks and epochs to the
happens-before relation. In the process, we discovered an
error in the paper proof. FASTTRACK’s Lemma 4 reads
as follows: Suppose σ is well-formed and σ

α
=⇒ σ′ and

5 2016/10/12



a, b ∈ α. Let t = tid(a) and u = tid(b). If a <α b then
Ka(t) v Kb(t). (Ka(t) refers to t’s vector clock at the time
a was performed.) This lemma is then used to prove that
if some operation b is stuck, then a previous operation a
must have raced with it, since Ka(t) 6v Kb(t). However, the
premise of Lemma 4 requires that a and b not be stuck, since
they are in a trace α that successfully executes to a state σ′.
Because of this constraint, the use of Lemma 4 in the proof
of completeness is in fact invalid. Fortunately, this premise
is stronger than necessary to prove Lemma 4, and in Coq we
are able to prove a more general version:

Lemma 2 (FASTTRACK Lemma 4, Fixed). Suppose σ is
well-formed and σ α

=⇒ σ′ and a ∈ α. Let t = tid(a) and
u = tid(b). If a <α;b b then Ka(t) v Kb(u).

With this statement of the lemma, the completeness proof
follows as outlined in the paper.

The size of this proof and the effort involved are compara-
ble to that of the proof by bisimulation. The direct proof also
requires a significant amount of inductive reasoning, which
might have been difficult to synthesize without the guide of
the paper proof. In this case, since FASTTRACK preserves
the same invariants as VECTORCLOCK, its proof has largely
the same structure as that of VECTORCLOCK; however, if
a different algorithm modified some of these invariants, we
believe that the proof by bisimulation would be significantly
easier to construct than the proof that recapitulates the rela-
tionship between v and happens-before.

3.4 Handling Multiple Joins
In many concurrent languages, once a thread has terminated,
it is possible for multiple threads to join with it. According
to the JOIN rule of Figure 1, on a join operation, Ct is up-
dated to Ct tCu and Cu(u) is incremented, maintaining the
invariant that Cu(u) > Ct(u). This increment is only neces-
sary to maintain the invariant, since u will perform no more
operations and does not require race detection, but it appears
harmless. However, if we consider the problem of imple-
menting this algorithm, we see that the increment is poten-
tially dangerous: if two threads join with u concurrently, the
updates to Cu will race. (See Section 4.2.1 for more on races
in instrumentation.)

If we remove the unnecessary increment, then there is no
risk of races between joins: both threads read Cu, but only
modify their own vector clocks, and concurrent reads do
not constitute a race. Without this increment, however, we
must modify the invariants of the race detection algorithm;
in particular, we must allow the basic invariant to be violated
for terminated threads. One possible approach is to add an
event exit(t) produced when a thread terminates, and to
extend the state with an additional component, a set X of
threads that have exited. A thread can then only perform
operations before it exits, and only be the target of a join
after it exits. With these changes, we obtain a new vector
clock race detection algorithm that supports multiple joins.

Theorem 3. VECTORCLOCK modified for multiple joins is
sound and complete.

We have verified this modified algorithm in Coq by mod-
ifying the proofs of VECTORCLOCK; note that since it ac-
cepts traces that are rejected by VECTORCLOCK (in the orig-
inal presentation of VECTORCLOCK, multiple joins to the
same thread are ill-formed), we cannot hope to prove its cor-
rectness by simulation.

4. Race Detection Instrumentation
In the previous section, we described the statement and ver-
ification of algorithms for dynamic race detection. For these
algorithms to be useful, they must be implemented in a tool
that runs during the execution of a program. Most com-
monly, this is achieved by instrumenting the program with
additional instructions that carry out the algorithm. Instru-
mentation must be defined in terms of the instructions of
some language instead of abstract arithmetic operations, and
must take place within the flow of a program rather than
alongside it. Because of this, the process of translating from
algorithm to instrumentation is error-prone, and any discrep-
ancy weakens the guarantee provided by the paper proof.

In practice, we found that the implementation of FAST-
TRACK in the RoadRunner framework uses a different ver-
sion of the RELEASE rule from that shown in Figure 1: the
release handler updates Lm to Lm t Ct rather than Ct. In
this case, the difference can be shown not to affect the cor-
rectness of the algorithm, and the FASTTRACK authors have
confirmed that it has no impact on performance.

To avoid such discrepancies, we must verify both the al-
gorithm and the instrumentation pass that implements it. In
this and the following sections, we present an instrumenta-
tion pass in a simple language that is formally proven to im-
plement the VECTORCLOCK algorithm of Section 3.2.

4.1 The Language
We begin with a multithreaded language just complicated
enough to have races and implement race detection instru-
mentation. The instructions of the language are inductively
defined as follows, where n is a natural number, a is a local
variable, e, e1, e2 are exprs, x is a memory location, l is a
lock, t is a numeric thread id, and li is a list of instrs:

e ::= n | a | e1 + e2 | max(e1, e2)
instr ::= a := e | a := load x | store e x | lock l

| unlock l | spawn t li | wait t
| assert(e1 <= e2)

A program is a list of instructions, which will serve as
the body of the thread with id 0. The dynamic state of
a program contains a collection P of thread states—each
a triple (t, li , ρ) of a thread id, a list of instructions (we
write · for the empty list), and an environment mapping

6 2016/10/12



local variables to values—alongside a memory state2 m.
We also include a special error state err for detected races
(i.e., failed asserts). We give semantics to the language
via a labeled transition system: each step is labeled with the
race detection operation it produces, if any. These operations
do not effect the program’s execution, but let us track the
behavior that “would have happened” if the VECTORCLOCK
algorithm was run in parallel with the program, which serves
as a reference for the correctness of the instrumentation. In
each step, we break the thread states into a composition
P ] (t, li , ρ) of an arbitrary thread t and the remaining
threads, and execute the next instruction in t, updating the
state as necessary. Thus, the transition rules for the language
are of the form (P,m)

o−→t (P ′,m′), where t is the executing
thread and o is the race detection operation produced, if any.

The semantics of the language is shown in Figure 6. Note
that we implement locks as memory locations in which we
store 0 if the lock is free or t+ 1 if it is held by thread t; we
assume a strict separation between locks and normal mem-
ory locations. The initial environment G0 maps all variables
to 0, and the initial memory m0 likewise maps all locations
to 0. We call a state P final if all of its threads have exe-
cuted to completion, with no instructions remaining; err is
also considered final. A result of a program prog is a final
state R such that ((0, prog , G0),m0)

~o−→∗ R; depending on
the order in which threads are interleaved, a program (even
a race-free one) may have many possible results.

4.2 Instrumentation
We instrument programs by augmenting each race-detection-
relevant instruction with a code snippet implementing the
corresponding VECTORCLOCK rule. We begin by defining
macros for the basic mathematical operations of the algo-
rithm, as shown in Figure 7. These macros make use of two
pieces of data from the program to be instrumented: tmp1
and tmp2 are two local variables unused in the program,
which will be used as temporaries for the instrumentation,
and z is the largest thread id generated in the lifetime of the
program. (Note that in our simple language, z can be deter-
mined statically; in real-world implementations, the vector
clock data would need to support dynamic resizing.)

With these macros as building blocks, we can straightfor-
wardly translate the rules of VECTORCLOCK from Figure 1
into code. For this purpose, we use a CompCert-style block-
offset memory model [8]; memory references have the form
(block , offset), and locations accessed in the original pro-
gram are considered to be blocks of size 1. We set aside
dedicated areas of memory for each of the components of
the vector clock state, labeled C, L, R, and W accordingly,

2 While our semantics is phrased in terms of memory states and updates, the
Coq implementation uses an approach based on previous work by some of
the authors [9], in which memory is represented as a sequence of operations
and program and memory semantics are stated separately. This approach is
convenient for verification, but its details are orthogonal to race detection
instrumentation.

(P ] (t, a := e;li , G),m) −→t

(P ] (t, li , G[a 7→ eval(G, e)]),m)

(P ] (t, a := load x;li , G),m)
rd(t,p)−−−−→t

(P ] (t, li , G[a 7→ m(x))],m)

(P ] (t, store e p;li , G),m)
wr(t,x)−−−−→t

(P ] (t, li , G),m[x 7→ eval(G, e)])

m(`) = 0

(P ] (t, lock `;li , G),m)
acq(t,`)−−−−−→t

(P ] (t, li , G),m[` 7→ t+ 1])

m(`) = t+ 1

(P ] (t, unlock `;li , G),m)
rel(t,`)−−−−→t

(P ] (t, li , G),m[` 7→ 0])

∀li ′G′. (u, li ′, G′) 6∈ P

(P ] (t, spawn u li ′;li , G),m)
fork(t,u)−−−−−→t

(P ] (t, li , G) ] (u, li ′, G0),m)

(u, ·, G′) ∈ P

(P ] (t, wait u;li , G),m)
join(t,u)−−−−−→t

(P ] (t, li , G),m)

eval(G, e1) ≤ eval(G, e2)

(P ] (t, assert(e1 <= e2);li , G),m) −→t

(P ] (t, li , G),m)

eval(G, e1) > eval(G, e2)

(P ] (t, assert(e1 <= e2);li , G),m) −→t err

Figure 6. Semantics of the simple language

and index into them by assigning a unique numeric identi-
fier to each thread, local variable, and lock, so that offset t
into block L[m] in memory contains the value of Lm(t) (we
write L[m] as a shorthand for L + m, using the commonly
understood equivalence between pointers and arrays). Note
that the ordering of the associated vector clock operations
depends on the instruction being instrumented; in particu-
lar, the blocking operations lock and wait must not change
the vector clock state until after they successfully complete.
Because in our language the bodies of future threads are
embedded in the spawn instructions, we instrument these
threads by recursively instrumenting each instruction in their
bodies. The instrumented version of prog is then simply
instrument(prog) , [[prog ]]0, the result of applying the in-
strumentation function (Figure 8) to each instruction in prog .

4.2.1 Necessary Synchronization
A direct translation of the race detection rules into code
cannot implement sound and complete race detection for one
important reason: when a race does occur, the corresponding

7 2016/10/12



move(p, q) , tmp1 := load p;
store tmp1 q;

// V := V ′

set(a, b) , move((a, 0), (b, 0));
. . .
move((a, z − 1), (b, z − 1));

// C = C[t := inct(Ct)]

inc(b, o) , tmp1 := load (b, o);
tmp1 := tmp1 + 1;

store tmp1 (b, o);

max(p, q) , tmp1 := load p;
tmp2 := load q;
tmp2 := max tmp1 tmp2;

store tmp2 p;

// C = C t C′

merge(a, b) , max((a, 0), (b, 0));
. . .
max((a, z − 1), (b, z − 1));

lea(p, q) , tmp1 := load p;
tmp2 := load q;
assert(tmp1 <= tmp2);

// C v C′

hb check(a, b) , lea((a, 0), (b, 0));
...
lea((a, z − 1), (b, z − 1));

Figure 7. Helper macros

instrumentation also races. In instrumented programs such
as that shown in Figure 9, depending on the ordering of
updates to metadata locations, the instrumentation may fail
to detect the race between the two threads. In general, poorly
synchronized race detection instrumentation cannot hope to
successfully detect all races. At the same time, adding too
much synchronization could significantly hurt performance.

Given the set of operations available in our language,
we can show that it suffices to add a lock for each mem-
ory location, which is used to protect the instrumentation
on that memory location. (Intuitively, the other cases do not
require extra locks because locks prevent races on their as-
sociated metadata, and a thread cannot race with the thread
that spawns it or waits for it to terminate; the instrumenta-
tion on two different locations also never conflicts.) To im-
plement the necessary synchronization in our instrumenta-
tion, we add another designated area of memory, X , such
that X[x] holds the lock protecting the metadata for x, and
add locking to the load and store instrumentation, as re-
flected in Figure 8. This guarantees that the instrumentation
will never race with itself, which is sufficient to allow us to
prove correctness of the instrumentation in the next section.

[[a := load x]]t , lock X[x];

hb check(W [x], C[t]);

move((C[t], t), (R[b], t));

a := load x;

unlock X[x];

[[store e x]]t , lock X[x];

hb check(W [x], C[t]);

hb check(R[b], C[t]);

move((C[t], t), (W [x], t));

store e x;

unlock X[x];

[[lockm]]t , lockm;

merge(L[m], C[t]);

[[unlockm]]t , set(C[t], L[m]);

inc(t, C[t]);

unlockm;

[[spawn u li ]]t , merge(C[t], C[u]);

inc(t, C[t]);

spawn u ([[li ]]u);

[[wait u]]t , wait u;

merge(C[u], C[t]);

inc(u,C[u]);

Figure 8. Instrumented versions of each instruction, with
instrumentation highlighted in gray.

//hb check(W [x], C[t1]) //hb check(W [x], C[t2])
tmp1 := load (W [x], 0) tmp1 := load (W [x], 0)

... ...
//hb check(R[x], C[t2])
tmp1 := load (R[x], 0)

... ...
store tmp1 (R[x], t1) store tmp1 (W [x], t2)

a := load x store 2 x

Figure 9. Races in instrumentation

5. Verifying Instrumentation
We can now prove the correctness of the instrumentation
pass we have described. We verify the instrumentation pass
by showing that the instrumentation records the same in-
formation and performs the same checks as the VECTOR-
CLOCK algorithm would perform on the input program. Our
verification strategy is as follows: first, we define a bigger-
step semantics for instrumented programs in our target lan-
guage. In this semantics, an instruction and its instrumenta-
tion execute together in a single step. We can show that every

8 2016/10/12



behavior of an instrumented program under the small-step
semantics is equivalent to one in this bigger-step semantics,
using “reordering” lemmas that let us gather all of the steps
in an instrumentation section into a consecutive sequence.
Second, we use a bisimulation argument to show that every
execution of an uninstrumented program is matched by an
execution of the instrumented program with the same behav-
ior, taking advantage of the bigger-step relation to charac-
terize the precise correspondence between instrumented and
uninstrumented steps. This bisimulation allows us to con-
clude that for every race-free behavior of a program there
exists a corresponding successful run of the instrumented
program and vice versa, and similarly that for every racy be-
havior of a program there exists a corresponding failing run
of the instrumented program and vice versa.

5.1 Bigger-Step Semantics and Reordering
Key to our correctness proof is the idea that the instrumented
program can be seen as executing under a bigger-step seman-
tics in which each instruction and its instrumentation execute
in a single step. These steps are of the form (P,m) ⇒t R,
as shown in Figure 10. Each step may modify the tempo-
rary variables in an arbitrary way, but otherwise performs a
combination of the underlying operation and the correspond-
ing checks and changes to the metadata. Instrumentation for
load and store may also fail a check and step to the err
state. We can show that each bigger step corresponds to a
sequence of steps in the small-step semantics3:

Lemma 3. If (P,m)⇒t (P ′,m′), then (P,m) −→∗ (P ′,m′).

Proof. By case analysis and the small-step rules.

Proving the correspondence in the other direction is
harder. Any given execution of an instrumented program
may not line up with one in which the instrumentation for
each instruction executes in a single step; at a state in the
middle of the execution, the program may be executing as
many different instrumentation sections as there are threads.
We resolve this problem by “reordering” the steps of any
execution so that the instrumentation for each instruction
executes contiguously. More precisely, we show that each
execution of an instrumented program is equivalent to one
in which the instrumentation executes atomically.

We begin by defining the uninstrumented state repre-
sented by each intermediate state of the execution:

Definition 4. An instrumented state P is an instrumented
suffix of an uninstrumented state P0 if P0 and P contain the
same threads and for each thread t:

• if P0(t) = ·, then P (t) = ·
• if P0(t) = i; li , then P (t) = li i; [[li ]]t, where li i is some

non-empty suffix of [[i]]t

3 From now on, we omit the race detection operation labeling on steps taken
by instrumented programs; it may differ arbitrarily from the labels on the
original program and is not relevant to detecting races.

m(X[x]) = 0 ∀o. m(W [x], o) ≤ m(C[t], o)
m′ = m[(R[x], t) 7→ m(C[t], t)]

(P ] (t, [[a := load x]]t;li , G),m)⇒t

(P ] (t, li , G[a 7→ m(x), tmp1 7→ ?, tmp2 7→ ?]),m′)

m(X[x]) = 0 ∃o. m(W [x], o) > m(C[t], o)

(P ] (t, [[a := load x]]t;li , G),m)⇒t err

m(X[x]) = 0 ∀o. m(W [x], o) ≤ m(C[t], o)
∀o. m(R[x], o) ≤ m(C[t], o)

m′ = m[x 7→ eval(G, e), (W [x], t) 7→ m(C[t], t)]

(P ] (t, [[store e x]]t;li , G),m)⇒t

(P ] (t, li , G[tmp1 7→ ?, tmp2 7→ ?]),m′)

m(X[x]) = 0
∃o. m(W [x], o) > m(C[t], o) ∨m(R[x], o) > m(C[t], o)

(P ] (t, [[store e x]]t;li , G),m)⇒t err

m(`) = 0 m′ = m[` 7→ t+ 1,
C[t] Z⇒ max(m(L[m]),m(C[t]))]

(P ] (t, [[lock `]]t;li , G),m)⇒t

(P ] (t, li , G[tmp1 7→ ?, tmp2 7→ ?]),m′)

m(`) = t+ 1
m′ = m[` 7→ 0, L[m] Z⇒ m(C[t]),

(C[t], t) 7→ m(C[t], t) + 1]

(P ] (t, [[unlock `]]t;li , G),m)⇒t

(P ] (t, li , G[tmp1 7→ ?, tmp2 7→ ?]),m′)

m′ = m[C[u] Z⇒ max(m(C[u]),m(C[t])),
(C[t], t) 7→ m(C[t], t) + 1]

(P ] (t, [[spawn u li ′]]t;li , G),m)⇒t

(P ] (t, li , G[tmp1 7→ ?, tmp2 7→ ?]) ] (u, [[li ′]]u, G0),m
′)

(u, ·, G0) ∈ P
m′ = m[C[t] Z⇒ max(m(C[t]),m(C[u])),

(C[u], u) 7→ m(C[u], u) + 1]

(P ] (t, [[wait u]]t;li , G),m)⇒t

(P ] (t, li , G[tmp1 7→ ?, tmp2 7→ ?],m′)

Figure 10. Bigger-step semantics of instrumented programs

This definition relates each currently executing instrumenta-
tion section to the corresponding original program instruc-
tion.

Now we need to characterize the circumstances in which
steps of an execution can be reordered. Steps by one thread
have no effect on the state or local environment of other
threads; the only way in which they communicate is via their
effects on the shared memory. As such, the main obliga-
tion in proving that we can reorder steps in an execution is
to show that reordering the associated memory operations
does not change the behavior of the program. It suffices
to show the stronger condition that if two instrumentation
sections execute simultaneously, then the memory locations
that they access do not overlap. We refer to this property

9 2016/10/12



as noninterference. In the following, we use (P,m) →∗t R
to mean that there is a (possibly empty) sequence of steps
(P,m) →t (P1,m1) →t ... →t R, and (P,m) →∗¬t R
to mean that there is a (possibly empty) sequence of steps
(P,m)→a (P1,m1)→b ...→z R where a, b, ..., z 6= t.

The core of noninterference is the fact that while an
instrumentation section is executing, the memory locations
it accesses are protected from access by other threads, by
either a lock or the innate mechanics of thread creation.

Lemma 4. Let P0 be a well-formed uninstrumented state
and P ′0 its instrumented version. Suppose we have some state
P ′1 and instruction i such that

(P ′0,m0) −→∗ (P ′1,m1) where P ′1(t) = [[i]]t; li and

(P ′1,m1) −→t (P2,m2) −→∗ (P3,m3) −→ (P4,m4)

such that P3(t) = i′; ...; li . Then the locations accessed by
t from m1 to m4 do not overlap with the locations accessed
by threads other than t from m1 to m4.

Proof. By case analysis on i, using the guarantees provided
by locking and spawn-wait synchronization.

We can then prove our main noninterference lemma.

Lemma 5 (Noninterference). Let P0 be a well-formed unin-
strumented state and P its instrumented version. Suppose
that (P,m)→∗t (P1,m1)→∗¬t (P2,m2) −→t (P3,m3) such
that P2 is an instrumented suffix of P0. Then the operation
performed to reach m3 does not overlap with the locations
accessed from m1 to m2.

Proof. By induction on the derivation of (P1,m1) →∗¬t
(P2,m2), using Lemma 4.

We call two memory states similar, written m1 ∼ m2,
if they allow the same values to be read at all non-metadata
locations. This similarity is preserved by reordering opera-
tions to unrelated locations, which allows us to use Lemma 5
to reorder steps and obtain similar memories. In an execution
in which every thread terminates, we can reorder the entire
execution into successful sections:

Lemma 6. Let P0 be a well-formed uninstrumented state
and P its instrumented version. If (P,m) −→∗ (P ′,m′) and
P ′ is a final state, then (P,m)⇒∗ (P ′,m′′) and m′′ ∼ m′.

We must also consider the case in which the instrumented
program detects a race, and so fails an assertion before
reaching a final state. In this case, other threads may be in
the midst of instrumentation sections when the execution ter-
minates. In order to show that the instrumented program is
nonetheless in the same state (up to metadata) as the origi-
nal program, we must use a slightly more sophisticated ap-
proach. The core of the approach, diagrammed in Figure 11,
is a confluence property stating that in an execution in which
an instrumentation section has an effect on non-metadata

(P,m)
∗//

i

t
&.

· i

t
// · ∗// · ∗// (P ′,m′)

·

∗ 33

Figure 11. Confluence diagram for completing partially ex-
ecuted instrumentation block for the source instruction i.

state, 1) we can reorder the section into an atomic block, and
2) executing all the remaining steps after the atomic block
yields the same state as completing the incomplete section
in the starting execution.

Lemma 7. Let P0 be a well-formed uninstrumented state
andP its instrumented version. Suppose (P,m) −→∗ (P1,m1)
−→t (P2,m2) −→∗ (P3,m3), where P1 is an instrumented
suffix of P0 and the step from P1 to P2 affects non-metadata
state. Then there exist P ′,m′, P ′3,m

′
3 such that (P,m) ⇒t

(P ′,m′) −→∗ (P ′3,m
′
3), m′3 ∼ m3, and (P3,m3) →∗t

(P ′3,m
′
3) by only executing metadata operations.

Proof. By noninterference and the confluence properties of
the step relation.

This lets us reorder an execution in which a race is de-
tected into a sequence of successful instrumentation sections
followed by a failing section:

Lemma 8. Let P0 be a well-formed uninstrumented state
and P its instrumented version. If (P,m) −→∗ (P ′,m′) →
err , then (P,m) ⇒∗ (P ′,m′′) such that m′′ ∼ m′ and
(P ′,m′′)⇒ err .

5.2 Simulation
Lemmas 3, 6, and 8 let us reason entirely in terms of the
bigger-step relation in which instrumentation executes atom-
ically. The correctness of the instrumentation now becomes
a matter of simulation: we need only prove that there is a
bisimulation between states of the uninstrumented program
and the instrumented program such that they mirror each
other’s behavior. First we define the relationship between
states of the abstract algorithm and memory configurations.

Definition 5. A block b in a memory m encodes a vector
clock V if for all t ≤ z, the value at (b, t) in m is equal to
V (t). A VECTORCLOCK state σ = (C,L,R,W ) is encoded
by a memory m, written m |= (C,L,R,W ), if C[t] encodes
Ct for every t, L[m] encodes Lm for every m, and R[x] and
W [x] encode Rx and Wx respectively for every x.

Definition 6. Uninstrumented state P relates to instru-
mented state P ′, written P ∼ P ′, if the same thread ids exist
in P and P ′, and for each pair of corresponding threads
(t, li , G), (t, li ′, G′), li ′ = [[li ]]t and G′(a) = G(a) for all
non-tmp variables a. Say (P,m) ∼ (P ′,m′) if P ∼ P ′ and
m ∼ m′.

For each of the two directions of bisimulation, we must
consider the case in which the original program does not

10 2016/10/12



When m′ |= σ and σ o
=⇒ σ1

(P,m)
o

t
//

∼

(P1,m1)

∼

(P ′,m′)
t
+3 (P ′1,m

′
1)

such that m′1 |= σ1.

When m′ |= σ and σ 6 o=⇒
(P,m)

o

t
//

∼

(P1,m1)

(P ′,m′)
t
+3 err

When m′ |= σ

(P,m)
o

t
//

∼

(P1,m1)

∼

(P ′,m′)
t
+3 (P ′1,m

′
1)

s.t. σ o
=⇒ σ1 and m′1 |= σ1.

When m′ |= σ

(P,m)
o

t
//

∼

(P1,m1)

(P ′,m′)
t
+3 err

such that σ 6 o=⇒

Figure 12. Bisimulation lemmas needed to prove Theorems 4 and 5. Solid arrows denote assumptions that imply the existence
of the dotted arrows, assuming that P is a well-formed initial state.

race (and the instrumented program matches its behavior),
and the case in which it does race (and the instrumented
program fails an assertion). The lemmas summarizing these
relationships are illustrated in Figure 12.

Lemma 9 (Bisimulations). Let P be a well-formed state

• If (P,m) ∼ (P ′,m′), m′ |= σ, (P,m)
o−→t (P2,m2),

and σ
o

=⇒ σ′, then (P ′,m′) ⇒t (P ′2,m
′
2) such that

(P2,m2) ∼ (P ′2,m
′
2) and m′2 |= σ′.

• If (P,m) ∼ (P ′,m′), m′ |= σ, (P,m)
o−→t (P2,m2),

and σ 6 o=⇒, then (P ′,m′)⇒t err .
• If (P,m) ∼ (P ′,m′), m′ |= σ, and (P ′,m′) ⇒t

(P ′2,m
′
2), then (P,m)

o−→t (P2,m2) such that (P2,m2) ∼
(P ′2,m

′
2), σ o

=⇒ σ′, and m′2 |= σ′.
• If (P,m) ∼ (P ′,m′), m′ |= σ, and (P,m)⇒t err , then

(P,m)
o−→t (P2,m2) and s 6 o=⇒.

Proof. Each lemma is proved, by induction on the execution,
case analysis on the next instruction to execute, and compu-
tation showing that the instrumentation performs exactly the
operations of the VECTORCLOCK algorithm.

The overall correctness of the instrumentation is ex-
pressed by the following theorems:

Theorem 4 (Race-free bisimulation). For all well-formed
programs prog ,

((0, instrument(prog), G0),m0) −→∗ (P ′f ,m
′
f )

for some final state P ′f
iff

((0, prog , G0),m0)
α−→∗ (Pf ,mf )

where α is race-free, and (Pf ,mf ) ∼ (P ′f ,m
′
f ).

Theorem 5 (Race-detected bisimulation). For all well-
formed programs prog ,

((0, instrument(prog), G0),m0) −→∗ (P ′1,m
′
1) −→t err

iff

((0, prog , G0),m0)
α−→∗ (P1,m1)

o−→t (P2, G2)

where (P1,m1) ∼ (P ′1,m
′
1), and, according to the VEC-

TORCLOCK semantics of Figure 1, σ0
α
=⇒ σ and σ 6 o=⇒.

Since (P,m) ∼ (P ′,m′) implies that the memory and lo-
cal environments agree on all locations except those involved
in the instrumentation, these are strong correctness proper-
ties. Theorem 4 guarantees that for each race-free execution
of the original program, there is a successful instrumented
execution that produces the same values in the environment
and memory (and vice versa). Theorem 5 guarantees that for
each racy execution of the original program, there is a cor-
responding instrumented execution that produces the same
values in the environment and memory up until the first race,
then fails (and vice versa). While it is difficult to talk about
“the same” execution across two different programs, these
lemmas guarantee that in terms of observable results, the
original and instrumented programs have the same behav-
ior modulo race detection, and that all racy executions are
successfully detected.

6. Coq Formalization
All the theorems stated in this paper have been formally ver-
ified in Coq. The size of the definitions and proofs in the
verification is shown in Table 1. The proofs varied consid-
erably in complexity. The proof of correctness for FAST-
TRACK by bisimulation with VECTORCLOCK is particularly
simple, consisting mainly of proving that various inequali-
ties are preserved by vector clock operations; this arithmetic
could probably be automated, decreasing the burden of ver-
ifying related algorithms. The proofs of correctness of the
instrumentation were much more complicated, even in pro-
portion to the definitions; the bulk of the work involved rea-
soning about noninterference and reordering. Our proofs do
not make use of any particularly advanced features of Coq,
and many of them were completed by one of the authors with
no prior Coq experience.

7. Related Work
There are a few examples of verified program instrumenta-
tion from the literature, such as the implementation of the
SoftBound system for enforcing memory safety in the Vel-
lvm framework [19] and the RockSalt system for software
fault isolation on x86 [12]. Neither of these systems support
instrumentation of multithreaded code, which is the main
source of complexity in our verification. Sadowski et al. [15]
partially verified an algorithm for atomicity analysis in Coq,

11 2016/10/12



definitions (loc) proofs (loc)
VECTORCLOCK 100 1150

FASTTRACK 70 800
multi-join VC (∆) 30 100

instrumentation 780 18900

Table 1. Size of definitions and proofs in lines of code.

using its semantics on traces of events and statements of the
invariants of the analysis, but have not yet extended it to a
verified instrumentation pass.

There is a rich history of systems that provide dynamic
data race detection, dating back to the original proposals
of the vector-clock algorithm [4, 7, 11]. Subsequent sys-
tems have implemented vector clocks, with various opti-
mizations, using dynamic analysis to provide race detection
for C/C++ [14, 16] and Java [2, 3, 5, 18] programs. Notably,
the proof of correctness of SLIMSTATE [18] uses a similar
approach to our bisimulation proof of FASTTRACK, relating
its behavior to a simpler algorithm (in this case FASTTRACK
itself). Before our work, none of these systems had been me-
chanically verified. Furthermore, these paper proofs operate
at a high level of abstraction, using an operational semantics
that elides important details such as the synchronization used
within the race detector itself. Thus, the implementations of
these algorithms are far removed from the algorithms them-
selves, leaving the door open for bugs.

8. Conclusions and Future Work
We have presented the first machine-verified proofs of cor-
rectness of the VECTORCLOCK and FASTTRACK race de-
tection algorithms and a race detection instrumentation pass
for a simple multithreaded language. The proofs provide a
strong connection between the instrumentation and the ab-
stract algorithm, and ensure that the instrumented program
has the same behavior as the original program. Our verifi-
cation efforts have revealed the need for a revised lemma in
the original paper proof of correctness for FASTTRACK, and
brought up a small discrepancy between the FASTTRACK
algorithm and its implementation. Our work places dynamic
data race detection on a formally verified foundation for the
first time, and our reordering-based approach to verifying
the instrumentation pass should be useful in verifying other
kinds of instrumentation on multithreaded programs.

References
[1] H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-

currency Memory Model. PLDI ’08, pages 68–78, New York,
NY, USA, 2008. ACM.

[2] M. Christiaens and K. D. Bosschere. TRaDe: Data Race
Detection for Java. ICCS ’01, pages 761–770, London, UK,
UK, 2001. Springer-Verlag.

[3] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and
transaction-aware Java runtime. PLDI ’07, pages 245–255,

June 2007.

[4] C. Fidge. Logical Time in Distributed Computing Systems.
Computer, 24(8):28–33, Aug. 1991.

[5] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise
Dynamic Race Detection. PLDI ’09, pages 121–133, New
York, NY, USA, 2009. ACM.

[6] A. Itzkovitz, A. Schuster, and O. Zeev-Ben-Mordehai. Toward
Integration of Data Race Detection in DSM Systems. J.
Parallel Distrib. Comput., 59(2):180–203, Nov. 1999.

[7] L. Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Commun. ACM, 21(7):558–565, July
1978.

[8] X. Leroy and S. Blazy. Formal Verification of a C-like Mem-
ory Model and Its Uses for Verifying Program Transforma-
tions. J. Autom. Reason., 41:1–31, July 2008.

[9] W. Mansky, D. Garbuzov, and S. Zdancewic. An Axiomatic
Specification for Sequential Memory Models. CAV ’15, pages
413–428, 2015.

[10] J. Manson, W. Pugh, and S. V. Adve. The Java Memory
Model. POPL ’05, pages 378–391, New York, NY, USA,
2005. ACM.

[11] F. Mattern. Virtual time and global states of distributed sys-
tems. Parallel and Distributed Algorithms, pages 215–226,
1989.

[12] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
RockSalt: Better, Faster, Stronger SFI for the x86. PLDI ’12,
pages 395–404, New York, NY, USA, 2012. ACM.

[13] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
SoftBound: Highly Compatible and Complete Spatial Mem-
ory Safety for C. PLDI ’09, pages 245–258, New York, NY,
USA, 2009. ACM.

[14] E. Pozniansky and A. Schuster. Efficient on-the-fly data race
detection in multithreaded C++ programs. PPoPP ’03, pages
179–190, New York, NY, USA, 2003. ACM.

[15] C. Sadowski, J. Yi, K. Knowles, and C. Flanagan. Proving
correctness of a dynamic atomicity analysis in Coq. Workshop
on Mechanizing Metatheory ’08, 2008.

[16] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data
Race Detection in Practice. WBIA ’09, pages 62–71, New
York, NY, USA, 2009. ACM.

[17] The Coq Development Team. The Coq Proof Assistant Ref-
erence Manual (Version 8.5), 2016. URL https://coq.

inria.fr/refman/.

[18] J. Wilcox, P. Finch, C. Flanagan, and S. N. Freund. Array
Shadow State Compression for Precise Dynamic Race Detec-
tion. ASE ’15, 2015.

[19] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. For-
malizing the LLVM Intermediate Representation for Verified
Program Transformations. POPL ’12, pages 427–440, New
York, NY, USA, 2012. ACM.

12 2016/10/12

https://coq.inria.fr/refman/
https://coq.inria.fr/refman/

	Introduction
	Proof Strategy
	Race Detection Algorithms
	Defining Data Races
	Vector-Clock Race Detection
	Correctness

	FastTrack
	Proof by Bisimulation
	Direct Proof

	Handling Multiple Joins

	Race Detection Instrumentation
	The Language
	Instrumentation
	Necessary Synchronization


	Verifying Instrumentation
	Bigger-Step Semantics and Reordering
	Simulation

	Coq Formalization
	Related Work
	Conclusions and Future Work

