BARRACUDA: Binary-level Analysis
of Runtime RAces in CUDA programs

Ariel Eizenberg!, Yuanfeng Peng!, Toma Pigli', William Mansky? *, Joseph Devietti

!University of Pennsylvania, USA

1

2Princeton University, USA

{arieleiz, yuanfeng, tpigli}@cis.upenn.edu, wmansky®cs.princeton.edu, devietti@cis.upenn.edu

Abstract

GPU programming models enable and encourage massively
parallel programming with over a million threads, requiring
extreme parallelism to achieve good performance. Massive
parallelism brings significant correctness challenges by in-
creasing the possibility for bugs as the number of thread in-
terleavings balloons. Conventional dynamic safety analyses
struggle to run at this scale.

We present BARRACUDA, a concurrency bug detector for
GPU programs written in Nvidia’s CUDA language. BAR-
RACUDA handles a wider range of parallelism constructs
than previous work, including branch operations, low-level
atomics and memory fences, which allows BARRACUDA to
detect new classes of concurrency bugs. BARRACUDA oper-
ates at the binary level for increased compatibility with ex-
isting code, leveraging a new binary instrumentation frame-
work that is extensible to other dynamic analyses. BAR-
RACUDA incorporates a number of novel optimizations that
are crucial for scaling concurrency bug detection to over a
million threads.

CCS Concepts o Software and its engineering — Soft-
ware maintenance tools

Keywords data race detection, GPUs, CUDA

1.

In recent years, graphics processing units (GPUs) have thor-
oughly permeated consumer processor designs. It is now es-
sentially impossible to find a smartphone, tablet or laptop

Introduction

* This work was done while William Mansky was a post-doc at the Univer-
sity of Pennsylvania.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
PLDI’17, June 18-23, 2017, Barcelona, Spain

ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062342

126

without a substantial integrated GPU on the processor die.
Utilizing these omnipresent GPUs, however, remains a chal-
lenge. Writing correct parallel code, a notoriously difficult
task, is exacerbated by the high degrees of parallelism that
GPUs demand to attain high performance. GPU program-
ming models have also grown more expressive over time
to support increasingly general-purpose GPU (GPGPU) pro-
gramming. This extra expressiveness, unfortunately, allows
many kinds of subtle concurrency bugs to arise, several of
which are new and particular to GPGPU programming. Such
bugs can introduce complicated consistency model seman-
tics [1} 44] — and even undefined behavior — into programs,
making debugging difficult.

Our system, BARRACUDA, seeks to provide precise, ef-
ficient race detection for the programming idioms used by
real-world programs written in CUDA, Nvidia’s GPGPU
programming language. We focus on races among the threads
of a single GPU kernel, which requires us to handle low-
level synchronization mechanisms like atomics and memory
fences. Previous GPGPU concurrency bug detection work
has eschewed handling these low-level constructs because
they necessitate tracking precise synchronization relation-
ships between individual threads. While conventional CPU
programming models can handle such fine-grained synchro-
nization, they struggle with the massive scale of GPU code.
In happens-before race detection, for example, each thread
in the program has a vector clock, with the vector size equal
to the number of threads (n? storage for n threads). GPU
programs can easily reach hundreds of thousands of threads,
requiring hundreds of gigabytes of storage for these vector
clocks alone, leaving aside other race detection metadata. To
scale to real-world GPU programs, BARRACUDA provides
new lossless compression techniques for vector clocks that
leverage the structure of the GPU thread hierarchy.

To further improve compatibility, we implement BAR-
RACUDA in a new binary instrumentation framework. Our
framework operates on PTX code, a virtual assembly lan-
guage for Nvidia GPUs. By operating on PTX code, our
framework can be run directly on existing binaries without
recompilation. Furthermore, we naturally handle inline PTX

assembly code, which appears in several of our benchmarks.
This paper makes the following contributions:

e We identify a new class of GPU concurrency bugs called
branch ordering races.

e We have constructed a concurrency test suite of 66 simple
CUDA programs. We use this suite to validate the cor-
rectness of both BARRACUDA and CUDA-Racecheck, a
race detector from Nvidia.

e We present the BARRACUDA dynamic data race detec-
tion algorithm, which handles low-level synchronization
idioms like atomics and fences, and uses lossless meta-
data compression to scale to GPU programs with over a
million threads.

e We present a proof that the BARRACUDA algorithm cor-
rectly tracks our notion of what it means for a CUDA
program to be well-synchronized.

® We have implemented BARRACUDA in a new binary in-
strumentation framework for CUDA programs that op-
erates at the PTX level. Running a program with BAR-
RACUDA incurs runtime overheads comparable to those
of Nvidia’s CUDA-racecheck race detector. Our binary
instrumentation framework can serve as a foundation for
other CUDA dynamic analyses as well.

2. CUDA Programming Model

To keep this paper self-contained, we provide a brief primer
on the CUDA programming model. A CUDA program that
runs on a GPU is called a kernel. CUDA uses the sin-
gle instruction multiple thread (SIMT) programming model
wherein a programmer specifies the code for a single thread,
and at runtime an entire collection of threads are created
with each thread executing the kernel’s code. The collec-
tion of runtime threads is known as a grid and has a hier-
archical structure. At the highest level of the grid are thread
blocks, which are further subdivided into warps, with each
warp consisting of up to 32 threads. Thread blocks, and the
threads within them, can be organized into a 1-, 2- or 3-
D structure, to simplify mapping each thread to the work
it needs to do. For simplicity we discuss only 1-D layouts
though BARRACUDA handles 2- and 3-D layouts as well.

CUDA programs are written in a variant of C/C++ and
compiled to a high-level assembly language called PTX
(Parallel Thread eXecution). All PTX instructions are SIMD
instructions executed by an entire warp of threads. Scalar
or sub-warp execution can be achieved via branches. If a
branch condition does not evaluate the same way for every
thread in a warp, branch divergence arises. Branch diver-
gence is handled via a SIMT stack ([24][Section 3.3.T) that
tracks the active threads within a warp.

CUDA presents a hierarchically-structured set of mem-
ory spaces that mirror the thread hierarchy. Local mem-
ory is private to each thread, shared memory is shared by

127

all threads within a thread block (but not accessible across
thread blocks) and global memory is a single memory space
accessible by all threads.

3. BARRACUDA Semantics

In this section we first describe how we convert dynamic
PTX instructions into abstract trace operations that are easier
to reason about. Next we provide our definition of what it
means for a CUDA program to be well-synchronized, and
show how to detect races on a trace. We then prove that our
algorithm tracks synchronization precisely.

3.1 Modeling a CUDA Execution as a Trace

A program execution is modeled as a trace: a sequence of
operations performed by a set of threads. Trace operations
are an abstraction over the stream of dynamic PTX instruc-
tions to facilitate race detection. Our trace operations are:

e rd(t,x) or wr(t,), in which a thread ¢ reads or writes a
location x

¢ endi(w), used to model a warp w’s lockstep execution
¢ if (w), in which warp w begins executing a branch

e else(w), in which w executes the else path of a branch
¢ fi(w), in which w concludes its execution of a branch
e bar(b), a barrier for all threads in thread block b

e atm(t,x), in which ¢ performs an atomic read-modify-
write operation on a location x

® acqBIlk(t, x), relBlk(t,) or arBlk(t, z), in which ¢ ac-
quires, releases (or both) a synchronization location z
with a block-level memory fence

® acqGlb(t,x), relGlb(t,x) and arGib(t,z) behave like
the block-level versions but with a global fence

Our trace includes operations like acquires and releases,
similar to high-level language consistency models like the
C++ memory model [7]. Inferring trace operations involves
heuristics (so that our traces are fundamentally approxima-
tions of the synchronization that actually occurred in an ex-
ecution) and is complicated by the lack of an official CUDA
memory consistency model to define illegal behavior. We de-
scribe below a useful set of rules for translating PTX instruc-
tions into trace operations.

While PTX instructions represent warp-level operations,
e.g., an entire warp performing a vector read from memory,
for simplicity we model memory operations (reads, writes,
atomics, acquires and releases) as thread-level operations so
that we can consider an access to one memory location at
a time. However, previous work has taken into account the
fact that warps execute in a “lockstep” fashion [47] wherein
all operations from warp instruction ¢+ complete before in-
struction ¢ + 1 begins. Lockstep warp execution is indirectly
acknowledged in the official CUDA documentation, stating

rd(t0, a)

rd(t0, a) rd(t1,a)
rd(tl, a) ~ o
endi(w) endi(w)
if (w) e N
wr(t0, b) if (w) else(w)
¥ v
di(w)
Id %r1,[a e wr(t0,b
° [] else(w) (*) —
©@%p bra labell)
endi(w)
st [b],1 ~
bra.uni label2 fi(w) if (w)
relBlk(t0, d)
label2: membar.cta relBlk(t1, d)

atom.exch %r2,[d],1

(a) PTX instructions

endi(w)

(b) trace operations

endi(w)

(c) synchronization order

Figure 1: (a) Sample PTX instructions for a warp w with 2 threads, ¢0 and ¢1. (b) Shading shows the translation from PTX
instructions into trace operations. (c) Arrows indicate synchronization order.

that cores perform scheduling at warp granularity, a warp ex-
ecutes only one common instruction at a time, and warps are
issued in program order [37} §4]. The treatment of diverging
control flow within a warp also gives evidence that warps ex-
ecute in lockstep (Section 3.3.T). However, the actual size of
a warp can change across architectures, so portable CUDA
code should eschew assumptions about warp size, or validate
these assumptions at runtime. BARRACUDA’s dynamic anal-
ysis checks for races based on the warp size of the current
architecture, though in future we could simulate the behavior
of smaller/larger warps to find additional latent bugs.

We encode the end of warp w’s instruction explicitly
with an endi(w) operation. A warp w performing a read
of location x is thus translated into rd(t, z) for each active
thread ¢ in w followed by endi(w) (see the top part of
[Figare 1 & [TF).

Normally, given a dynamic trace, control flow constructs
like loops, function calls, branches and so forth are only im-
plicitly represented. However, we are the first to recognize
that branches in GPUs have synchronization implications,
so we include explicit branch operations in a trace. Uncondi-
tional control flow constructs like loops and function calls do
not require such handling and are implicitly unrolled/inlined
in the trace.

Control-flow operations are modeled at warp level as
they manipulate the warp-level stack that tracks branches,
and would be awkward to model at the level of individual
threads. if, else and fi operations are readily inferred from
static PTX code by examining the targets of branch instruc-
tions (see [Figure T)). All branches are encoded using if, else
and fi for simplicity: simpler constructs like an if statement
(without an else) can be encoded via an empty else path.

We infer synchronization trace operations as follows.
bar(b) represents a block-wide barrier for thread block b,
when every thread in b having executed the bar.sync PTX

128

instruction (__syncthreads in CUDA). Atomic instructions
(atom.* in PTX, or atomic* functions in CUDA) from a
thread ¢ to location x not immediately preceded or fol-
lowed by a memory fence in static code become standalone
atm(t, r) operations (see for more details).

If a store instruction is immediately preceded by a mem-
ory fence (membar.cta or membar.gl in PTX, __thread-
fence_block or __threadfence in CUDA[') in static code, the
store plus the fence are bundled together into a release opera-
tion, with the scope (block or global) determined by the kind
of fence used (see the relBlk operation in[Figure T)). Acquire
operations arise similarly, from a load followed by a fence.
An atomic instruction sandwiched between fences acts as
both an acquire and a release (like arBlk). To identify errors
in CUDA lock implementations, we treat the atom.cas and
atom.exch PTX instructions specially. atom.cas performs
a compare-and-swap, commonly used for obtaining a lock,
and atom.exch performs a fetch-and-set, commonly used to
free a lock. If atom.cas is followed by a fence, we treat them
as an acquire. If atom.exch is preceded by a fence we treat
them as a release.

Our inferences of acquire and release operations from
PTX code are necessarily approximate, as other CUDA code
may compile into something that looks to us like an acquire
or release operation. If we infer an acquire/release where
none existed in the original code, BARRACUDA may con-
sider an execution safe when it actually contains a race. In-
terestingly, even the CUDA C/C++ API defines synchroniza-
tion operations in terms of fences and loads/stores/atomics,
instead of with high-level acquires and releases. Thus, some
inference is necessary whether performing race detection
at the PTX or the CUDA C/C++ level. We tuned our in-

! System-level fences are treated as global fences, as we focus on intra-
kernel races.

ference of acquire/release operations based on litmus tests,
documentation, and sophisticated code examples like thread-
FenceReduction from the CUDA SDK, and find that our
policy avoids any incorrect atomic inference for our bench-
marks.

We consider only feasible traces: those where (1) a warp-
level memory instruction from warp w is represented in
the trace as a consecutive sequence of memory operations,
one for each active thread in w, (2) each of w’s memory
instructions is followed by an endi(w) operation, and (3)
branches are translated appropriately into if (w), else(w)
and fi(w) operations.

3.2 Synchronization Order

While operations appear in a total order in a trace, that or-
der does not imply that the effects of operations can be lin-
earized. Instead, we derive a partial order called synchro-
nization order from a trace o, written <., such that a <, b
when a must occur before b. Synchronization order is the
transitive closure of the smallest relation such that a <, b
when a occurs before b in « and either:

e g and b are both performed by thread ¢ (intra-thread
program order); or

e one of a or bis endi(w), and the other is by a thread that’s
both in w and active at the time the endi is performed
(intra-warp program order); or

e one of a and b is bar(k), and the other is by a thread in k
(barrier synchronization); or

® ¢ and b are operations on the same synchronization loca-
tion x where a is a release operation and b is an acquire
operation, and both operations are either 1) at block scope
within the same thread block or 2) at least one operation
is at global scope (inter-thread synchronization)

Given this definition, a data race occurs when two opera-
tions a and b both access the same location, at least one of
them is a write, they are not both atm operations (atomic
operations do not race with each other, but also do not imply
synchronization), and neither a <, b nor b <, a holds (so
that the operations are seen as concurrent in the trace).

3.3 The BARRACUDA Algorithm

BARRACUDA checks for races by maintaining a tuple of
metadata based on vector clocks. A vector clock V' records
a timestamp for each thread ¢ in a system, written as
V(t). The standard comparison (C), join (L) and incre-
ment (¢nc;) operations on vector clocks are defined as:

VOV iff VL V() < V(¢
Vuv = X.max(V(¢),V'(t))
inc(V) = Au. if u=tthen V(u) + 1else V(u)

The minimal vector clock has a 0 timestamp for each thread

and is written Ly .
Just as with the FASTTRACK race detector [20]], to save
space epochs are sometimes used in place of vector clocks;

129

an epoch c@t is a reduced vector clock that holds a times-
tamp for just one thread, and is treated as a vector clock that
is ¢ for t and 0 for every thread other than ¢. Because epochs
have a single non-zero entry, an epoch can be compared with
a vector clock, or another epoch, in O(1) time using the <
operator. We say c@Qt < V when ¢ < V(t). L, denotes a
minimal epoch 0@Q¢0.

The BARRACUDA analysis state is a tuple (K, C, S, R, W).
K, is the per-warp stack for warp w that tracks branch di-
vergence. Each stack entry is an active mask (amask for
short) which is the set of threads that are currently active.

C; is a vector clock for the thread ¢: C,,(t) records the
last time at which the thread ¢ synchronized with u. S, rep-
resents the synchronization location z, which is an ordinary
memory location since CUDA programs often use the same
location to store data and for coordination. S is a map from
thread block — vector clock, recording the most recent log-
ical time at which some thread from each thread block syn-
chronized with z. R, is the read metadata for a location x
recording the most recent reads of x, which can be encoded
either as an epoch or as a vector clock. W, is a tuple of (write
epoch, atomic-bit) for a location z, recording the time of the
most recent write to z. The atomic-bit records whether the
most recent write to x arose from an atomic operation or not.
Epoch comparison < with write metadata W, ignores the
atomic bit. We write F(t) for the epoch C(t)Qt, the current
epoch for thread ¢.

Our initial analysis state oy is the tuple (Aw.[initActive],
At.iney(Ly), Az, b. Ly, Ax. L, Ax.(L, false)). Each warp’s
initial active mask takes account of the number of threads
requested for the grid, as the last warp of each thread block
may be only partially full. Each thread initially has an empty
vector clock with its own entry incremented, all synchro-
nization locations have empty vector clocks for all blocks,
and all memory locations have empty read epochs and empty
write epochs without any previous atomic operations.

3.3.1 Basic Operations

gives the operational semantics for BARRACUDA
for non-synchronization memory accesses and branches. For
thread-level memory accesses, if a thread ¢ is not active (due
to a branch), t’s operation is a NOP — no analysis state is
updated. To avoid clutter, each rule implicitly checks that
the current thread is active.

Read and write operations are handled essentially as
with FASTTRACK. Totally-ordered reads can use a com-
pact epoch representation (rule READEXCL), while concur-
rent reads require a vector clock (rule READSHARED). The
first concurrent read, which necessitates a transition from an
epoch to a vector clock, is handled by the READINFLATE
rule. The WRITEEXCL rule handles totally-ordered writes,
and WRITESHARED the first write after concurrent reads.
Because the ENDINSN rule increments per-thread logical
time after every instruction, the “same epoch” rules of FAST-
TRACK are not needed.

R, € VectorClock
R' = R,[t := Ci(t)]
(K,C,S,R, W) =rit2) (K, C,S,R', W)

WLj Ot

READSHARED

R, € Epoch
Rz j Ct Wz j Ct
R' = R[z := E(t)]
(K,C,S,R, W) =rit=) (K, C,S,R', W)

R, € Epoch
W, < Cy R, = clock@t’
ve = L[t :== Cy(t), t' := clock]
R' = R[z := v(]
(K,C,S,R, W) = (K, C,S, R, W)

R, € Epoch

Wz j Ct Ra, j Ct

R' = R[z = L]

W' = Wiz := (E(t), false)]
(K,C,S,R, W) =w(ta) (K, C,S,R', W)

R, € VectorClock
Wz j Ct Rz E Ct
R' = R[z = L.]
W' = Wiz := (E(t), false)]
(K,C,S,R, W) =uw(ts) (K C,S, R, W)
amask = K, .peek()
ve = |_|tE amask Ct
Vt € amask . C', = incry(ve)
Vt §é amask . Clt = Ct

(K, C,8,R, W) =erdi) (K, C", S, R, W)

amaski, amasky = splitActive(K, .peek())
stacks = Ky.push(amask:)

stacky = stack:.push(amasks)

K' = K|w := stacks]

ve = I—lte amaskg Ct

Vt € amasks . C'¢ = incr;(vc)

YVt ¢ amasks . C'y = C,

(K,C,S,R, W)= (K' C'" S, R, W)

stack = Ky .pop()
K' = K|w := stack]
amask = stack.peek()
ve = I—ltEamask Ct
Vt € amask . C'; = incr.(ve)
vt ¢ amask . C'y = C;
(K,C,S,R, W) =else(w).fitw) (K’ C' S, R, W)

READEXCL

READINFLATE

WRITEEXCL

WRITESHARED

ENDINSN

IF

ELSEENDIF

Figure 2: Barracuda basic operational semantics

To faithfully model lockstep warp execution, the individ-
ual thread memory operations within a warp instruction run
concurrently. This allows us to detect intra-warp races]
With intra-warp races, according to Nvidia, “the number of
serialized writes that occur to that location varies depending

2 An intra-warp race is always a write-write race, as all active threads within
the warp execute the same instruction and reads cannot race.

130

on the compute capability of the device ... and which thread
performs the final write is undefined” [37, §4.1]. Thus, intra-
warp races can result in architecture-specific behavior and
nondeterminism. If all active threads within the warp write
the same value to a location, we do not consider this a race as
the documentation is clear that the outcome is well-defined.
Our implementation detects and filters such ‘“same-value”
intra-warp races.

The end: rule is used to join all active threads together
after all thread-level memory operations complete, and then
to fork the active threads again to support detection of fu-
ture intra-warp races. Note that endi operates only on active
threads within a warp w; inactive threads (e.g., those fol-
lowing a different control flow path) are logically concurrent
with the active threads, as we explain next.

Branches on GPUs are handled via a hardware SIMT
stack [24]. The top of the stack tracks which threads are
active along the current control-flow path, and deeper entries
support nested control flow. We explain the operation of the
SIMT stack along with our semantics. When an if operation
is encountered, the set of currently-active threads is split
according to the branch condition into two sets: those threads
active on the then path and those active on the else path.
One of these sets may be empty due to the branch condition.
The IF rule uses the splitActive function to capture the actual
active masks. The then and else sets are represented as active
masks that are pushed onto the stack K,, for the current
warp w. The order in which they are pushed is arbitrary,
but determines the order in which the paths will execute.
In our IF rule, the else path is pushed first so the then
path executes first. While Nvidia states that “the different
executions paths have to be serialized” [37, §5.4.2] they
do not define the order in which the serialization occurs.
These semantics are similar to the way event handlers are
treated in event-based concurrency systems like Android
and JavaScript [6, 29, 42]. Our semantics treats different
paths as concurrent so that we can identify branch ordering
races between paths, though our modeling is conservative in
that we do not exempt commutative paths. Branch ordering
races are a new class of bugs not identified in previous
work, and represent a subtle way in which a GPU program’s
correctness can implicitly rely on a given architecture and its
SIMT stack implementation. Once the then and else active
masks are determined, the IF rule joins and forks the then
threads, capturing the fact that they are now concurrent with
the else threads.

else and fi operations are handled the same in our seman-
tics. First we pop the SIMT stack to discard the then/else
active mask, respectively, and perform a join and fork of the
newly-active threads. For an else operation, this models the
beginning of the else path’s execution which is logically con-
current with the then path. For a fi operation, this models
threads from both the then and else paths restarting lockstep
execution after their branching is complete.

3.3.2 Barriers and Atomic Operations

presents BARRACUDA'’s operational semantics for
synchronization operations. bar(b) is the simplest operation,
representing a barrier for all threads within a thread block b.
The BAR rule has an explicit predicate that all threads in b
are active, as otherwise the Nvidia documentation states that
“the code execution is likely to hang or produce unintended
side effects” [37, §B.6]. Executing a bar operation with
inactive threads, known as a barrier divergence bug, is
detected as an error by BARRACUDA.

The INITATOM* rules handle an atomic operation on lo-
cation where the preceding write to = was non-atomic.
These rules check for ordering with previous reads and the
previous non-atomic write, as Nvidia states in the PTX doc-
umentation that “atomic operations on shared memory loca-
tions do not guarantee atomicity with respect to normal store
instructions to the same address.” [38} §8.7.12.3]. While the
documentation leaves the door open for stronger semantics
for atomics on global memory, recent work [1]] recommends
that programmers avoid making both atomic and non-atomic
accesses to the same global memory location, as doing so
can exhibit relaxed consistency effects. We adopt a similar
approach, and do not consider atomic and non-atomic ac-
cesses to synchronize with one another.

The ATOM* rules handle an atomic operation on x when
the preceding write to x was another atomic. These rules
check for ordering with preceding reads, but elide checks of
the previous atomic write. Nvidia states that “Atomic func-
tions do not act as memory fences and do not imply syn-
chronization or ordering constraints for memory operations”
[37, §B.12]. We capture this constraint by avoiding checks
between atomic operations and also avoiding additions to
synchronization order. Thus, atomics alone cannot be used
to synchronize between threads.

3.3.3 Memory Fence Litmus Tests

To explore the semantics of inter-thread synchronization,
we conducted a series of litmus tests on two Nvidia GPUs:
a GRID K520 Kepler GPU, obtained via Amazon AWS,
and a GTX Titan X Maxwell GPU on a local machine. We
ran variations of the message-passing (mp) litmus test from
[1], with different combinations of fences in each thread.
The variables x and y reside in global memory, the default
cache operator is .cg (skipping the incoherent L1 cache), and
each test thread runs in a distinct thread block. We utilized
[L, 44]]’s memory stress and thread randomization strategies
to provoke weak consistency behavior.

Our results are presented in which shows that
using a membar.cta in each thread allows non-sequentially-
consistent (non-SC [30]]) behavior to arise on the K520 GPU,
though not on the GTX Titan X. Using a membar.g| in either
thread resulted in SC behavior across all our tests on both
GPUs. Our results are consistent with [[1], which ran only
tests with the same fence in each thread. Of course, testing

131

YVt € b . active(t)

ve = ||, Ct
Vteb.C'y =incri(vc)
Vigb.C =G

B
(K, C, 8, R, W) =00 (K, 0 8, R, W)

W, = (-
W, < C, :
R' = R[z := L]
W' = Wiz := (B(t), true)]

, false)
R
=1

R, € Epoch
2 G

INITATOMEXCL

(K,C,S,R, W) =wm(ta) (K, C,S, R, W)

W, = (—, false) R, € VectorClock
W’E j Cf, RT E Ct

R = R[z := L]

W' = Wiz := (E(t),true)]

(K, C7S7R7 W) —atm(6,0) (K7 O,S,R’, W’) INITATOMSHRD
W, = (—, true)
R' = R[z := L]
W' = Wiz := (E(t), true)]

(K, C,S,R, W) =atm(t2) (K, O, 8, R, W'

R, € Epoch

ATOMEXCL

Wy = (_7
= Rz := L]
W' = Wiz := (E(t), true)]

true) R, € VectorClock

ATOMSHARED

(K,C,S,R, W) =wm(ta) (K, C,S, R, W)

¢’ = Clt := C, U S, [block(t)]]

AcCQB
(Ka C, S, R, W) :>va3“€<757$) (}(7 C’/7 S7 R, W) CQBLOCK

§' = 8, [block(t) := (i
C' = C[t :=incr,(C1))]

RELBLOCK
(K,C,S,R, W) =rBik(ta) (K, C' S| R, W)

— [t = Gy U S, [block(1)]
S’ = S,[block(t) := C’4]
C// — Cl[t = incrt(C,t)]

ACQRELBLK
(K. C.S, R, W) =Bk (K, 0" S R, W)

”C:Ubegmd Sz[b]
C' = C[t:= C; Uwc]

ACQGLOBAL
(K, C, S, R, W) eaGl(tn) (K, O, 8, R, W) 2

Vb € grid . S';[b] = C
C" = C[t :=incry(Cy)]

R
(K, C.5, R, W) =00 (K, 0, S, R, W) ororosar

ve =y gria So[0]
C'= C[t:= Cy U]
Vb € grid . S';[b] =

C" = C'[t == incr,(C"
[t := incre(C70)] ACQRELGLB

(K’ C’ S’ R7 W) :>aTGlb(t7Z) (K7 Cl,7 Sl? R’ W)

Figure 3: Semantics for synchronization operations

final: r1=1 A r2=0
2.1 Id.global.cg r1,[y]
2.2 fence2

imt:x =y =20
1.1 st.global.cg [x],1
1.2 fencel

1.3 st.global.cg [y],1 2.3 Id.global.cg r2,[x]
observations per 1 million runs
fencel fence2 K520 GTX Titan X
membar.cta membar.cta 7,253 0
membar.cta membar.gl 0 0
membar.gl membar.cta 0 0
membar.gl membar.gl 0 0

Figure 4: Memory fence litmus tests

cannot prove the absence of weak behavior, but our results
demonstrate that membar.cta is insufficient to implement
synchronization between thread blocks.

3.3.4 Inter-thread Synchronization

To realize inter-thread synchronization, release and acquire
operations must be used. These rules update the S, meta-
data, a map from thread blocks to vector clocks for a lo-
cation x, which is used to propagate synchronization order.
The ACQBLOCK rule is similar to a lock acquire in a CPU
program in that the current thread ¢ joins its vector clock CY
with the vector clock for the synchronization location, but
scoped to the particular thread block in which ¢ resides. The
RELBLOCK rule accordingly updates S, only for the cur-
rent block. A relBlk in block b; followed by an acgBlk in
block b, thus does not contribute to synchronization order,
as non-SC behavior is possible in this case (Section 3.3.3).

Our litmus tests show that a global fence in just one
message-passing thread results in SC behavior. The ACQ-
GLOBAL rule thus joins the vector clocks for all blocks in
S, while RELGLOBAL sets the vector clocks for all blocks
in the grid. This ensures that a global release/acquire in one
block can synchronize with an acquire/release in any other
block, even if the latter operation is at block scope.

3.4 Correctness

We can show that the rules of BARRACUDA precisely model
the synchronization order relation, as indicated by the fol-
lowing theorem.

Theorem 1 (Correctness). For any feasible trace o, there is
some ¢’ such that oo = o' iff there are no races in a.

As in FASTTRACK, the key invariant is that a thread’s
timestamp for itself is greater than any other component’s
timestamp for it. In terms of the BARRACUDA analysis state,
this means that for each thread ¢, C;(t) > C,(t) for any
u #t, Ry (t) < Ci(t), Wp(t) < Ci(t), and S,(t) < Ci(t).
The proof of correctness consists in showing that 1) this
invariant is maintained and 2) as long as it is maintained, the
C relation on vector clocks precisely captures the happens-
before relation.

132

The new synchronization operations that appear in our
system—endi, bar, if, else, and fi—are all “barrier”-style
operations, taking a set of threads and synchronizing with all
operations performed by all active threads in the set. Thus,
instead of referring to the thread id of an operation, we write
tids(a) to refer to the set of threads involved in operation
a (if a is not a barrier operation, then tids(a) is a singleton
set). We write a.« for the trace beginning with the single
operation a followed by the sequence «, and likewise a.c..b
for the trace that starts with operation a, followed by the
sequence «, followed by the operation b. We write C§* for
the vector clock of ¢ before the operation a is performed,
and C{* for the vector clock of ¢ after a is performed. Our
first lemma is needed to show that a trace in which no races
is detected is in fact race-free:

Lemma 1 (Clocks Imply Synchronization). Suppose that
0o =% 0, =P o). Forany t € tids(a) and u € tid(b), if
Ca(t) < Cb(t) then a <,4.a.p b.

Proof. By induction on the length of o. If ¢ = w, then
a <g.a.p b by intra-thread program order. Otherwise, we
know that C{(t) > C%(t), so there must be some operation
e in a.« that increases the value of C,(t); let e be the
last such operation. This operation must have been either
a bar, acqgBlk or acqGlb operation. For bar, there is some
u’ such that C¢(t) < C&(¢), and v and v are both in
the synchronizing set for the barrier; thus we know that
e < b and by the inductive hypothesis a < e, allowing us
to conclude that a < b. If e is an acquire operation, it must
have been performed by u (so e < b), and there must be
some earlier operation d by a thread ' such that d < e and
C#(t) < C4,(t), so by the inductive hypothesis we have
a<dandsoa <b. O

Our second lemma is needed to show that if a trace is
race-free, then no race will be detected. As in FASTTRACK,
we use the abbreviation K¢ to refer to C’'® when a is an
acquire operation, and C'* otherwise.

Lemma 2 (Synchronization Implies Clocks). Suppose that
o =%0"and a € o. Forany t € tids(a) and u € tids(b), if
a <qp bthen K4(t) C K°(u).

Proof. By induction on the derivation of a <, b. In par-
ticular, when synchronization follows from a barrier e, then
C¢ C CI¢ for all t and w in the synchronization set. O

Once we have shown that the vector clock C relation
accurately captures the < relation, the rest of the proof
of Theorem [I] follows the same argument as the proof of
correctness of FASTTRACK.

Although we have proven that BARRACUDA correctly
detects races according to our definition of synchronization

order, recall from |Section 3.1| that synchronization order

is derived from an event trace that must be inferred from

GPU CPU

event
queues

kernel code host code

instrumentation race detector

Figure 5: System overview: shading indicates the compo-
nents of Barracuda.

an actual execution. Because this inference is approximate,
BARRACUDA may not detect all real races in practice.

4.

The BARRACUDA implementation takes advantage of the
structure of modern heterogeneous systems by offloading
much of the race detection analysis to the host CPU, in-
stead of performing race detection directly on the GPU
device which would substantially worsen the performance
of the target kernel. There are two benefits to our hybrid
GPU+CPU approach. First, the host is typically underuti-
lized during kernel execution, as it waits for the results of
the kernel. Second, the host is better suited to the memory-
intensive work of race detection as a modern multicore can
easily have 1-2 orders of magnitude more DRAM than a
modern GPU does. A kernel running under BARRACUDA
logs all GPU memory accesses, both global and shared, to
queues in GPU memory. These queues are then consumed
by host-side threads which do the actual race-checking.

We describe the implementation of BARRACUDA in three
steps. First, we describe our dynamic instrumentation frame-
work. Then, we explain the GPU memory access logging
mechanism. Finally, we describe the implementation of the
host-side race detector.

Implementation

4.1 Dynamic Instrumentation

BARRACUDA supports all modern versions of CUDA, in-
cluding 7.5 and 8. We implemented our own binary in-
strumentation framework because existing frameworks, such
as GPU Ocelot [17] and GPU Lynx [18], do not support
CUDA SDK versions 5.0 or newer. We also considered the
SASSI machine-level instrumentation framework [40] but
opted against it because it is closed-source and did not sup-
port adequate hooks on synchronization instructions.

BARRACUDA is implemented as a shared library injected
into the target process using LD_PRELOAD. It intercepts the
__cudaRegisterFatBinary() function call, loads the embed-
ded CUDA fat binary, strips out any architecture-specific bi-
nary entries, and extracts and decompresses the architecture-
neutral PTX assembly code contained in the fat binary. This
PTX code is then fed into the instrumentation engine which
performs three operations:

e Merging the GPU-side logging framework. The GPU-
side logging framework is written in regular CUDA. This

133

code is compiled into PTX at build time and stored inside
the BARRACUDA library. At runtime, the logging code is
merged with the application’s PTX code.

¢ Unique thread id calculation. We add PTX code to
the beginning of every kernel to combine the three-
dimensional block id and thread id’s into a globally
unique value. For the rest of the paper we will refer to
this 64-bit value as the TID. All device functions are
modified to accept this TID as an additional argument so
that the TID is always available for logging calls.

e Memory and synchronization logging. We scan the
PTX source code and add logging calls to all load, store,
atomic, fence, and barrier instructions. As described in
we infer high-level acquire and release op-
erations from the PTX code. Special care is required for
predicated instructions: we transform the predicated in-
struction into a branch and a non-predicated instruction,
so that the logging call is covered by the branch. To de-
tect intra-branch races we also add logging calls to all
branch convergence points. To reduce logging overhead
we avoid some repeated logging of accesses (within the
same basic block) to the same memory location, as in
some CPU race detection schemes [22] (in particular, we
do not log an access to the address in a register if the
value of the register has not been changed since the last
logged access).

Once the application PTX code is instrumented, the data
structures within the CUDA runtime are modified to point
to the newly-generated fat binary that includes only the in-
strumented PTX code. We then relinquish control back to
__cudaRegisterFatBinary() and our modified PTX is loaded,
JIT-compiled into machine code, and loaded onto the GPU.

The BARRACUDA shared library is also responsible for
initializing the GPU-side memory structures used by BAR-
RACUDA. We reserve a configurable percentage (50% by de-
fault) of the GPU’s global memory for the shared GPU-CPU
queues, and invoke a kernel to initialize this region.

Special care has to be given to device resets, as these
will free the memory backing BARRACUDA’s queues. When
BARRACUDA intercepts a cudaDeviceReset call, it delays
the reset until the queues are fully drained. It also raises an
internal flag so BARRACUDA is reinitialized the next time
any CUDA library call is intercepted.

4.2 Device-side Logging

BARRACUDA’s GPU logging facility has been designed to
be minimal and fast. The core of the GPU-side logging al-
gorithm is a lock-free queue of fixed-size records (Figure 6).
The queue contents are tracked via three pointers: a write
head, a commit index, and a read head, which track the next
entry available for writing by the GPU logging instrumen-
tation, for transferring from the GPU to the host, and for
reading by the host race detector, respectively. The queue

read commit write
head index head

readby - written by GPU, active writes free
CPU .~ unread by.CPU by GPU records
queue |B| 5| 0 x
record | 81§ %% addresses
format [£]|&| ® €
Figure 6: A Barracuda queue, for communicating events

from the GPU to the host race detector.

uses a virtual indexing scheme with monotonically increas-
ing indices, which are mapped to physical locations by tak-
ing their modulus with the queue size. The queue is consid-
ered full when the write head is queue-size entries ahead of
the read head. Log records are modeled closely on the trace
operations given in except that, for efficiency, a
record contains the operation for an entire warp. Each record
contains fields identifying the warp, the operation, a 32-bit
mask of active threads, and 32 entries for the addresses ac-
cessed by each thread in the warp (for memory operations).
Records are a fixed 16 4+ 8 x 32 = 272 bytes in size.

To best take advantage of the memory architecture of
the GPU we allocate multiple queues, which can achieve
orders of magnitude better throughput than using a single
queue. Each thread block sends events to a single queue,
though multiple thread blocks may use the same queue. We
found the optimal organization to be ~ 1.1 — 1.5 queues per
SM (i.e., GPU core). A significant benefit of mapping each
thread block to a single queue is that locking can sometimes
be avoided in the host-side race detector. For example, the
host race detector uses one CPU thread per queue, so opera-
tions on shared memory (which are private to a thread block)
will always be processed by the same CPU thread, avoiding
the need for locking.

Logging operations on the device are performed cooper-
atively by all threads within a warp w. To log an operation,
the first active thread within w is selected as the leader ;.
t; reserves an empty slot in the queue, waiting for the CPU
to drain queue entries if necessary. Then ¢; shares the in-
dex of this empty slot with the other threads in w, and all
threads record their individual memory addresses in paral-
lel. ¢; then fills in the warp ID, operation type, and active
mask, and makes the completed record visible to the CPU by
bumping the commit index (Figure 6). Logging operations
use CUDA’s system-level fences to ensure proper memory
ordering between the GPU and the CPU.

4.3 Host-side Detector

We implement the BARRACUDA race detection algorithm on
the host side. Each GPU queue is allocated a correspond-
ing host thread and GPU stream. Queue draining is the mir-

134

Example Execution Barracuda State T1’s Full Per-Thread VC

T
[1.1,1[0,00[0,00]000]

Time 1 Converged
T:O T T. active mask: 0x7
i local clock: 1| warp WO
v 1% block clock: 0| “———
block BO

Converged
active mask: 0x7
local clock: 2
block clock: 1

[2.22][1,1,1]0,00]000]

Timel TO T1 T2
H 1

Diverged
active mask: 0x6
local clock: 2
warp clock: 1
block clock: 0

[1.2.2[0,0,0[0,00]000]

NestedDiverged
active mask: 0x2
local clock: 3
warp clock: [1,3,2]
block clock: 0

[1.3.2]0,00[0.00]0,00]

SparseVC
active mask: 0x2
local clock: 2
per-thread vc: ¢

[1.2,1[0,00[06,0]000]

;

Figure 7: Barracuda’s four per-thread VC formats. The ex-
ample kernel has 3 threads per warp, 2 warps per block,
and 2 blocks. Shading of the example execution indicates
each thread’s logical time. The right side shows the equiv-
alent full per-thread VC that the Barracuda state implicitly
represents.

ror image of the logging algorithm, with the read head used
instead of the write head. The detector processes each de-

queued event according to the rules given in
4.3.1 Thread VC Compression

One of BARRACUDA’s key innovations is a more effi-
cient mechanism for tracking the per-thread vector clocks
(PTVCs) used to record when each thread has synchronized
with each other thread in the program (the C; state from[Sec-|
[tion 323). In a race detector for conventional multithreaded
programs, these PTVCs consume O(n?) space, where n is
the number of threads in the program, but n is at most a
few tens of threads in practice. With GPU programs, in con-
trast, kernels can easily utilize more than one million threads,
which entails crippling space overheads. Fortunately, there is
often massive redundancy among the entries in each PTVC.
Accordingly, BARRACUDA employs an adaptive scheme for
compressing PTVCs, mirroring the GPU thread hierarchy.
In our analysis of CUDA programs, we discovered that
roughly 90% of the time PTVCs have the same value for all
threads external to a warp and either 1) the same value for all

threads in a warp or 2) two distinct values, e.g., along the two
branches of an if-else statement. This creates an opportunity
for space savings by storing just a few clock values for each
warp. BARRACUDA’s PTVC compression is lossless, and
always functionally equivalent to a full vector clock.

In BARRACUDA, PTVCs are managed at warp granularity
because it is often the case that threads in a warp have
identical PTVCs. PTVCs can be in one of four formats, as
Figure 7| illustrates. The simplest case is the CONVERGED
format, used when all threads in a warp are executing in
lockstep. Consider the PTVC for thread T1 from warp WO
(top execution of [Figure 7). The PTVCs for TO, T1 and
T2 are managed collectively at warp granularity. The active
mask of 0x7 indicates that all 3 threads in WO are active,
and the local clock gives the logical time each thread in
WO has for itself. The block clock indicates that the threads
in WO have never synchronized with the other threads in
BO. All other PTVC entries are implicitly 0, indicating that
the threads in WO have not synchronized with other threads
outside their block.

The second execution in shows the impact of a
block-level barrier. The block clock for WO is 1 after the bar-
rier, representing the fact that all threads in W0 synchronized
with all other threads in the block at time 1. The threads in
WO then move on after the barrier to time 2.

The third execution illustrates the DIVERGED format,
which is used to handle the common case of non-nested
control flow. TO takes one path after the if statement, and
threads T1 and T2 the other path. The mask is updated to
reflect the active threads (just T1 and T2) along the current
path. We introduce a new warp clock field to track the last
time the active threads in WO synchronized with the inactive
threads in WO, which was at time 1 before the if statement.
Synchronization with threads outside the warp is handled via
the block clock as in the CONVERGED format.

The fourth execution illustrates the NESTEDDIVERGED
format, which is used to handle nested control flow. Here,
the warp clock field is generalized to a vector clock to track
the precise times at which the active threads synchronized
with each other thread in WO. Thus, the warp clock field
is a vector clock with the vector size equal to the number
of threads in a warp. Due to the nested if statements, T1
is the only currently active thread, and it last synchronized
with TO at time 1 and T2 at time 2. Synchronization with
threads outside the warp is handled via the block clock as in
the CONVERGED format.

The final execution illustrates the fully-general SPAR-
SEVC PTVC format, which is simply an unordered map
from threads to clocks. Using a map instead of a vector
clock is more efficient because, typically, the entries for most
threads are zero. In this example, T1 is the only thread that
acquires a lock [which was previously released by thread T7
at time 6. T7 is in a completely different thread block than
T1. This point-to-point synchronization between arbitrary,

135

GPU global
memory

U
1 byte{ D
[]

shadow
memory

int writeEpoch;
int readEpoch;
map* readers;
bool atomic;
bool readShared;
bool synclLoc;
bool globalMem;

32 bytes

Figure 8: Barracuda shadow memory format. The format is
the same for global (shown) and shared memory locations.

individual threads requires tracking clock values precisely at
thread granularity.

BARRACUDA’s PTVC management is integrated with a
stack that mirrors the GPU’s reconvergence stack 24, to re-
duce redundant tracking of the active mask. Each stack entry
is 16 bytes and contains the fields listed in the “BARRACUDA
State” portion of Whenever a reconvergence op-
eration occurs, we merge the two divergent cases in the
stack by joining their PTVCs (the ELSEENDIF rule from
[Figure 2). BARRACUDA checks for opportunities to use a
simpler PTVC format at branches and at reconvergence, as
further compression is often possible in these cases.

4.3.2 Barriers

Block-level barriers are the most common CUDA synchro-
nization operation. When a barrier operation occurs, we take
a block-wide join of all PTVCs (the BAR rule from
[ure 3). We optimize this case by continually tracking the
highest clock value for each block, so that at a barrier we
can simply broadcast this value to each thread’s PTVC.

4.3.3 Shadow Memory

The host race-detector maintains a shadow memory con-
taining per-location race detection metadata (Figure 8). This
metadata contains a last-write epoch and a last-read epoch
(as in FASTTRACK), and, for locations that have been con-
currently read, an unordered map from TIDs to clocks that
acts as a sparse vector clock. We do not extensively opti-
mize per-location VCs (unlike per-thread VCs) as the case of
shared readers is extremely rare in all the CUDA code we ex-
amined. Per-location metadata also contains a spinlock and
a set of flags for memory location attributes: whether the lo-
cation was last accessed by an atomic operation (the atomic
bit from [Section 3.3, has been read concurrently by mul-
tiple threads, is used as a synchronization location, and is
in global or shared memory. All together, per-location meta-
data occupies 28 bytes, but 64-bit alignment forces the ob-
ject to be padded to 32 bytes. Thus, host-side memory us-
age is 32x that of the GPU, but CPU memory is usually
much more abundant than GPU memory. Memory consump-

tion could be substantially decreased if all GPU memory ac-
cesses are 2- or 4-byte aligned. Although most of the bench-
marks we tested access memory exclusively at 4-byte gran-
ularity, BARRACUDA uses 1-byte granularity for generality.

We allocate shadow memory for shared and global mem-
ory differently. Shared memory consumption is small (16, 32
or 48KB per thread block in current versions of CUDA) and
known at kernel launch, so we preemptively allocate shadow
memory for shared memory. A kernel with 512 x 1024
threads each having 16KB of shared memory requires just
16384 x 512 x 32 = 256MB of CPU memory).

Global memory consumption, on the other hand, is not
known at kernel launch as allocations can occur concur-
rently with kernel execution. Thus, for tracking accesses to
global memory, we allocate shadow memory on-demand in
response to a kernel’s actual global memory accesses. We
maintain shadow memory for the GPU’s global memory us-
ing a page table where each page holds shadow memory
to track IMB of the GPU’s global memory. When a global
memory location is accessed by the GPU we check if it be-
longs to an allocated page. If not, we lock the root of the
page table and allocate a new page of shadow memory.

When loads, stores and standalone atomic operations are
processed, BARRACUDA begins by retrieving the appropri-
ate shadow structures for all the addresses accessed by active
threads. The code implements the BARRACUDA algorithm
as described in If a race is detected, the offend-
ing TIDs are examined to classify the race as a divergence
race, an intra-block race or inter-block race.

A memory location x accessed with acquire and release
operations is deemed a synchronization location and tracked
specially. GPU code usually has few such synchronization
locations, and many programs have none, so storing them
in shadow memory would be wasteful. Instead they are
stored in their own map (the S, map from [Section 3.3).
For each synchronization location we maintain a collec-
tion of VCs, representing the various times at which dif-
ferent thread blocks synchronized on x. Each of these per-
block VCs is compressed via the scheme described above
in For each synchronization location z, the
ACQGLOBAL, RELGLOBAL, ACQBLOCK, RELBLOCK
rules are thus implemented via join operations between the
PTVCs and the per-block VCs of x.

5. Experimental Setup

Our experimental machine is a dual-socket system with two
Xeon E5-2620v4 processors, each with 8 cores running at
2.1GHz, and 128GB of RAM. The machine additionally has
an Nvidia GTX Titan X GPU which uses the Maxwell ar-
chitecture and has 12GB of RAM, and 3072 threads across
24 SMs running at 1GHz. The GPU is connected via PCle
x16. The machine uses Ubuntu 16.04 (Linux 4.4.0), Nvidia
CUDA Toolkits 7.5 and 8, and version 367.48 of the Nvidia

136

drivers. All benchmarks were built with Nvidia’s nvcc com-
piler, using the flags -cudart=shared -arch=sm_35 -O.

BARRACUDA is evaluated with the following bench-
marks: we use bfs, backprop, dwt2d, gaussian, hotspot,
hybridsort, kmeans, lavamd, needle, nn, pathfinder and
streamcluster from Rodinia version 3.1 [8]]; hashtable from
GPU-TM [16! 25]; bfs from SHOC [14]]; dxtc and thread-
FenceReduction from the Nvidia CUDA SDK 7.5 sam-
ples; and block_radix_sort, block reduce, block_scan, de-
vice_partition_flagged, device_reduce, device_scan, device-
_select_flagged, device_select_if, device_select_unique and
device_sort_find_non_trivial_runs from Nvidia’s CUB SDK
1.4.1 samples. Performance measurements are the average
of 10 runs, with a full GPU reset between each run.

6. Evaluation

In this section we evaluate BARRACUDA along two axes:
ability to detect races precisely, and performance overhead.

6.1 Concurrency Bug Suite

To evaluate the correctness of BARRACUDA, we constructed
a CUDA concurrency bug suite consisting of 66 small
CUDA programs that exhibit subtle data races or race-free
behavior via global memory, shared memory, within and
across warps and blocks, and using a variety of atomic
and memory fence instructions to implement locks, whole-
grid barriers and flag synchronization. BARRACUDA reports
races (or the absence of a race) correctly for all 66 of our
tests. Nvidia’s CUDA-racecheck [39] reports correctly on
only 19 tests, sometimes reporting races where there are
none (with intra-warp synchronization), missing races on
global memory, and even hanging on the tests involving
spinlocks.

6.2 Standard Benchmarks

gives more detail about each benchmark used in our
evaluation. Column 2 lists the number of static PTX instruc-
tions in each program. Column 3 lists the total number of
threads used within the largest kernel in each program. Four
benchmarks launch more than 1 million threads to run on
the GPU simultaneously, and several launch many hundred
thousand. Column 4 lists the total global memory used by
each benchmark, which is typically small with the exception
of DWT2D. There is plenty of space in global memory BAR-
RACUDA to allocate its queues without impinging on the ap-
plication. Finally, column 5 lists the number of races found
by BARRACUDA for each benchmark, and whether the races
are in shared memory or global memory. Previous software-
based race detectors for CUDA [36, [39, 146, [47] focus on
shared memory, and so will not be able to detect the 9 races
in global memory that BARRACUDA finds.

Figure 9| shows the fraction of the static instructions in
each benchmark that are instrumented by BARRACUDA. Be-
cause arithmetic instructions don’t require instrumentation

» 50.0%

unoptimized optimized
§40.o%
S 30.0%
<)
< 20.0%
£ 10.0%
QE" 0.0%
2 S QNN & & & & D ¢ &K S & & D 2 QO 0 (@ d K e R
8 X Q@Q g\"/ EY ,@Qo.bo‘ & \\,bé‘ S & oc;»"’ & ,@‘& & & OIS &L R P Qgg/ & &
£ SF Q > \2\0 ‘OK\ ‘{—6\ NS %Q’ ~(\K\ S BN & 8\““/ & (\I&/.oo/ & QL Q}Q' N\
o P © Q AN NG A DA I S ;9 & S
S X W » & L & (O Y
o S g S5V g
& ° d7 >/ d7 87

Figure 9: The percentage of static PTX instructions instrumented by Barracuda before (left bars) and after instrumentation

pruning (right bars).

—~ 10000

x

o 1000

2

£ 100

c

§ 10

° 1

[=

2 01

H }

3 C R F SRS L G E S ¢ LS @ o

3] Q"\’\‘o\c,Q‘vo’b/b@Q, .bf—'}'%r}?&‘“(\'&/boc,(\/b\)OQ(”\./OQ.Q

- C*Q0$ 'z?)‘9 Q\o\' & @(\e\?’ e \\s&\ & & b“e @b g N \J 57 &7 Q¥ s @‘?
& © © S NC R D Q’b& ARV

N B\ >/ >/ AR

Figure 10: The performance overhead of Barracuda, normalized to native execution. Note the log y-axis.

with BARRACUDA, and they typically comprise the bulk of
the instructions in a GPU kernel, BARRACUDA never instru-
ments more than half of the instructions among our bench-
marks. The blue bars in show how fewer instruc-
tions are instrumented thanks to BARRACUDA's intra-basic-
block logging optimizations (Section 4.T)).

shows the performance overhead that BAR-

RACUDA incurs, normalized to native execution. BAR-
RACUDA’s dynamic binary instrumentation approach, which
maximizes compatibility with existing CUDA binaries,
can incur significant performance overheads. On DWT2D,
BARRACUDA’s slowest benchmark, the overhead is 3700x,
though the relative overhead for this and many other bench-
marks is exacerbated by short running times: DWT2D exe-
cutes natively in just 90ms. dxtc is BARRACUDA’s slowest
benchmark in absolute time and completes in 20 minutes,
which is too slow for interactive use but more than fast
enough for usable debugging.

hotspot with BARRACUDA reliably runs significantly
faster than with native execution. We have traced this is-
sue to differing JIT compilation decisions with and without
BARRACUDA, but have not yet pinpointed the issue further.

6.3 Bugs Discovered

Here we describe some of the bugs we discovered with BAR-
RACUDA. In the hashtable benchmark, each thread stores
a value in a random key in the hashtable. Each hashtable

137

bucket is protected by a fine-grained lock. The program uses
an atomicCAS without a fence to synchronize access to each
bucket. BARRACUDA detects two bugs: first, since there is
no fence for the atomicCAS, it can be reordered with other
operations that manipulate the hashtable bucket. Second, re-
leasing the bucket lock occurs via a non-atomic write with-
out a fence. The hashtable data structures reside in global
memory, so the bug is not discoverable by tools that focus
only on shared memory [36} 139,146, 47]).

Another interesting race comes from the bfs SHOC
benchmark [14]. The graph data structure in bfs is stored
in global memory. As multiple threads traverse the graph,
they track the distance of each node from the starting node.
These updates are performed without atomic operations or
fences, and the writes can occur concurrently from multiple
blocks. A flag is also concurrently set to 1 from multiple
threads. While the CUDA documentation states that multi-
ple writes, from threads within a warp, to the same location
are serialized [37, §4.1], no such guarantees are stated for
writes beyond a warp.

7. Related Work

Several prior schemes have been proposed for detecting data
races in GPU programs. Boyer et al. [36] analyze CUDA
programs for data races and inefficient memory accesses.
Their race analysis is restricted to shared memory only, and

2 3 4 5

static total global races
benchmark insns threads mem MB found
BFS 281 1,000,448 155
Backprop 272 1,048,576 9
DWT2D 35,385 2,304 6,644 3 global
Gaussian 246 1,048,576 124
Hotspot 338 473,344 119
Hybridsort 906 32,768 252 1 shared
Kmeans 384 495,616 252
Lavamd 1,320 128,000 965
Needle 1,006 495,616 64
Nn 234 43,008 188
Pathfinder 285 118,528 155 7 shared
Streamcluster 299 65,536 188
BFS 770 1,024 68 3 global
Hashtable 193 64 103 3 global
dxtc 1,578 1,048,576 17 120 shared
ThreadFenceRed 5,037 16,384 787 12 shared
block_radix_sort 2,174 128 66
block_reduce 2,456 1,024 70
block_scan 4,451 128 118
d_partition_flagged 2,834 128 66
d_reduce 2,397 128 66
d_scan 1,661 128 65
d_select_flagged 2,615 128 66
d_select_if 2,508 128 66
d_select_unique 2,484 128 66
d_sort_find_non_triv 16,479 128 66

Table 1: The benchmarks used with Barracuda.

does not take account of atomics or memory fences. GRace
[47] proposed a dynamic analysis to find intra-warp races
and inter-warp races via shared memory, using static analy-
sis to prune instrumentation when possible. GMrace [46]] de-
tects the same kinds of errors as GRace, but with improved
running time. Neither GRace nor GMrace detect any inter-
block concurrency bugs, nor bugs related to global memory,
atomics or memory fences. LDetector [34] can find concur-
rency bugs via both shared and global memory, but it uses
value-based checking to detect writes so it may miss bugs
that involve a thread overwriting a location with the loca-
tion’s existing value. LDetector does not handle atomics or
memory fences. HAccRG [27] is a hardware-based data race
detector for GPUs. It provides coverage of both shared and
global memory and also memory fences. To keep hardware
overheads low, however, HAccRG does not track all readers
for a given location, which can lead to missed races.

The structured data parallel nature of many GPU kernels
makes them well-suited to static verification. The GPUver-
ify system [215) 10, [L1} [13]] uses SMT solving to find data
races and barrier divergence. GPUverify is sound (it does
not miss real bugs) up to the CUDA features it supports,
though it occasionally reports false races and does not sup-
port memory fences or indirect memory accesses. PUG [32]
also uses SMT solving to find races and barrier divergence
bugs, though its abstractions can cause it to be both unsound
and incomplete in some cases. The GKLEE [33]] and KLEE-
CL [12] systems use dynamic symbolic execution to find

138

bugs in GPU kernels, and GKLEE has been extended to han-
dle atomic operations [9], but it is difficult to scale symbolic
execution beyond small kernels. Leung et al. [31] check for
data races and determinism of GPU kernels leveraging the
insight that most of a kernel’s execution is independent of its
input parameters, leaving only a portion of the kernel that re-
quires dynamic checking. Their dynamic analysis does not,
however, handle kernels with atomics or memory fences.
Though completeness remains a challenge for static anal-
ysis techniques, leveraging verification machinery to filter
dynamic instrumentation could be a powerful and comple-
mentary optimization for systems like BARRACUDA.

Several papers have focused on elucidating the memory
consistency models of GPU architectures. Work targeting
AMD GPUs [26, 28| 45] has culminated in the Heteroge-
neous System Architecture (HSA) formal memory consis-
tency model [23] adopted by AMD and other GPU manu-
facturers. In comparison, work on formalizing CUDA’s con-
sistency model is still nascent and driven by 3rd party re-
searchers. Recent work has explored the CUDA memory
model via litmus tests: [[1]] presents an axiomatic memory
consistency model for Nvidia GPUs, and [44] identifies fuzz
testing strategies to expose concurrency bugs on GPUs. Our
definition of synchronization order is informed by this prior
work. In contrast to work on litmus testing, we have pursued
a new safety property for CUDA that can be dynamically
checked without the need for fuzzing or program-specific
invariants.

There is a vast literature on data race detection for CPU
programming models [15, 19, 35, 41} 43]]. These prior
schemes, FASTTRACK [20, 21] in particular, have inspired
the design of BARRACUDA. However, these CPU-based
schemes are not directly applicable to CUDA programs both
because of the sheer scale of GPU kernels and because of
new GPU programming model features, like scoped fences
and branch ordering, that necessitate the development of
new algorithms.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back on previous versions of this work. This work was sup-
ported by NSF grant XPS-1337174 and a hardware donation
from Nvidia. Any opinions, findings or conclusions in this
material are those of the authors and do not necessarily re-
flect the views of these sponsors.

References

[1] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh
Gopalakrishnan, Jeroen Ketema, Daniel Poetzl, Tyler
Sorensen, and John Wickerson. GPU Concurrency: Weak
Behaviours and Programming Assumptions. In Proceedings
of the International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS,
2015.

[2] Ethel Bardsley, Adam Betts, Nathan Chong, Peter Colling-
bourne, Pantazis Deligiannis, Alastair F. Donaldson, Jeroen
Ketema, Daniel Liew, and Shaz Qadeer. Engineering a Static
Verification Tool for GPU Kernels. In Proceedings of the In-
ternational Conference on Computer Aided Verification, CAV,
2014.

[3] Ethel Bardsley and Alastair F. Donaldson. Warps and Atom-
ics: Beyond Barrier Synchronization in the Verification of
GPU Kernels. In Proceedings of the 6th International Sym-
posium on NASA Formal Methods - Volume 8430, 2014.

[4] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz
Qadeer, and Paul Thomson. GPU Verify: A Verifier for GPU
Kernels. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications, OOPSLA, 2012.

[5] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen
Ketema, Shaz Qadeer, Paul Thomson, and John Wickerson.
The Design and Implementation of a Verification Technique
for GPU Kernels. ACM Transactions on Programming Lan-
guages and Systems, 37(3), May 2015.

[6] Pavol Bielik, Veselin Raychev, and Martin Vechev. Scalable
Race Detection for Android Applications. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, OOPSLA, 2015.

[7] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, 2008.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In
IEEE International Symposium on Workload Characteriza-
tion, ISWC, 2009.

[9] Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and
Zvonimir Rakamarié. Formal Analysis of GPU Programs with
Atomics via Conflict-Directed Delay-Bounding. 2013.

[10] Nathan Chong, Alastair F. Donaldson, Paul H.J. Kelly, Jeroen
Ketema, and Shaz Qadeer. Barrier Invariants: A Shared State
Abstraction for the Analysis of Data-dependent GPU Ker-
nels. In Proceedings of the ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Ap-
plications, OOPSLA, 2013.

[11] Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. A
Sound and Complete Abstraction for Reasoning About Paral-
lel Prefix Sums. In Proceedings of the ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL, 2014.

[12] Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly.
Symbolic Testing of OpenCL Code. In Proceedings of the
7th International Haifa Verification Conference on Hardware
and Software: Verification and Testing, HVC’11, 2012.

[13] Peter Collingbourne, Alastair F. Donaldson, Jeroen Ketema,
and Shaz Qadeer. Interleaving and Lock-step Semantics for
Analysis and Verification of GPU Kernels. In Proceedings
of the European Symposium on Programming Languages and
Systems, ESOP, 2013.

139

[14] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S.
Meredith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju,
and Jeffrey S. Vetter. The Scalable Heterogeneous Computing
(SHOC) Benchmark Suite. In Proceedings of the 3rd Work-
shop on General-Purpose Computation on Graphics Process-
ing Units, GPGPU-3, 2010.

[15] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
a race and transaction-aware java runtime. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, Jun 2007.

[16] W. W. L. Fung et al KiloTM Benchmarks, 2013.
http://www.ece.ubc.ca/ wwlfung/code/kilotm-gpgpu_sim.tgz.

[17] Naila Farooqui, Andrew Kerr, Gregory Diamos, S. Yalaman-
chili, and K. Schwan. A Framework for Dynamically Instru-
menting GPU Compute Applications Within GPU Ocelot. In
Proceedings of the Fourth Workshop on General Purpose Pro-
cessing on Graphics Processing Units, GPGPU-4, 2011.

[18] Naila Farooqui, Andrew Kerr, Greg Eisenhauer, Karsten
Schwan, and Sudhakar Yalamanchili. Lynx: A dynamic
instrumentation system for data-parallel applications on
GPGPU architectures. In [IEEE International Symposium
on Performance Analysis of Systems and Software, ISPASS,
2012.

[19] Colin Fidge. Logical time in distributed computing systems.
IEEE Computer, 24(8), Aug 1991.

[20] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient
and Precise Dynamic Race Detection. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI, 2009.

[21] Cormac Flanagan and Stephen N. Freund. FastTrack: Efficient
and Precise Dynamic Race Detection. Communications of the
ACM, 53(11), Nov 2010.

[22] Cormac Flanagan and Stephen N. Freund. RedCard: Re-
dundant Check Elimination for Dynamic Race Detectors. In
Proceedings of the European Conference on Object-Oriented
Programming, ECOOP, 2013.

[23] HSA Foundation. HSA Memory Consistency Model.
http://www.hsafoundation.com/html/HSA _Library.htm#-
SysArch/Topics/03 _Memory/_chpStr_HSA _memory _consis-
tency_model.htm.

[24] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M.
Aamodt. Dynamic Warp Formation and Scheduling for Effi-
cient GPU Control Flow. In Proceedings of the IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO, 2007.

[25] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword,
and Tor M. Aamodt. Hardware Transactional Memory for
GPU Architectures. In Proceedings of the IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO, 2011.

[26] Benedict R. Gaster, Derek Hower, and Lee Howes. HREF-
Relaxed: Adapting HRF to the Complexities of Industrial Het-
erogeneous Memory Models. ACM Transactions on Architec-
ture and Code Optimization, 12(1), Apr 2015.

[27] Anup Holey, Vineeth Mekkat, and Antonia Zhai. HAccRG:
Hardware-Accelerated Data Race Detection in GPUs. In Pro-

ceedings of the International Conference on Parallel Process-
ing, ICPP, 2013.

[28] Derek R. Hower, Blake A. Hechtman, Bradford M. Beck-
mann, Benedict R. Gaster, Mark D. Hill, Steven K. Reinhardt,
and David A. Wood. Heterogeneous-race-free Memory Mod-
els. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS, 2014.

[29] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong,
Cristiano L. Pereira, Gilles A. Pokam, Peter M. Chen, and Ja-
son Flinn. Race Detection for Event-driven Mobile Applica-
tions. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI,
2014.

[30] Leslie Lamport. How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs. IEEE Trans-
actions on Computers, C-28(9), Sep 1979.

[31] Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta,
Ranjit Jhala, and Sorin Lerner. Verifying GPU Kernels by Test
Amplification. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI, 2012.

[32] Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-
based Verification of GPU Kernel Functions. In Proceedings
of the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, FSE, 2010.

[33] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan,
Indradeep Ghosh, and Sreeranga P. Rajan. GKLEE: Concolic
Verification and Test Generation for GPUs. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP, 2012.

Pengcheng Li, Chen Ding, Xiaoyu Hu, and Tolga Soyata.
LDetector: A Low Overhead Race Detector For GPU Pro-
grams. In Proceedings of the 5th Workshop on Determin-
ism and Correctness in Parallel Programming (WODET ’14),
2014.

[35] Friedemann Mattern. Virtual Time and Global States of Dis-
tributed Systems. In Parallel and Distributed Algorithms,
1989.

[36] Michael Boyer, Kevin Skadron, and Westley Weimer. Auto-
mated Dynamic Analysis of CUDA Programs. In Workshop
on Software Tools for MultiCore Systems, 2008.

[34]

140

[37] Nvidia. CUDA C Programming Guide V7.5.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[38] Nvidia. Parallel Thread Execution ISA Version 4.3.
http://docs.nvidia.com/cuda/parallel-thread-execution/.

[39] Nvidia. Racecheck Tool. http://docs.nvidia.com/cuda/cuda-
memcheck/index.html#racecheck-tool.

[40] Nvidia. SASSI Instrumentation Tool for NVIDIA GPUs,
2016. https://github.com/NVlabs/SASSI.

[41] Eli Pozniansky and Assaf Schuster. Efficient on-the-fly data
race detection in multithreaded C++ programs. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP, 2003.

[42] Veselin Raychev, Martin Vechev, and Manu Sridharan. Effec-
tive Race Detection for Event-driven Programs. In Proceed-
ings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications, OOP-
SLA, 2013.

[43] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. FEraser: a dynamic data race
detector for multithreaded programs. ACM Transactions on
Computer Systems, 15(4), Nov 1997.

[44] Tyler Sorensen and Alastair F. Donaldson. Exposing Errors
Related to Weak Memory in GPU Applications. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI, 2016.

[45] John Wickerson, Mark Batty, Bradford M. Beckmann, and
Alastair F. Donaldson. Remote-scope Promotion: Clarified,
Rectified, and Verified. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications, OOPSLA, 2015.

[46] M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. GMRace:
Detecting Data Races in GPU Programs via a Low-Overhead
Scheme. IEEE Transactions on Parallel and Distributed Sys-
tems, 25(1), 2014.

[47] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal.
GRace: A Low-overhead Mechanism for Detecting Data
Races in GPU Programs. In Proceedings of the ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP, 2011.

	Introduction
	CUDA Programming Model
	Barracuda Semantics
	Modeling a CUDA Execution as a Trace
	Synchronization Order
	The Barracuda Algorithm
	Basic Operations
	Barriers and Atomic Operations
	Memory Fence Litmus Tests
	Inter-thread Synchronization

	Correctness

	Implementation
	Dynamic Instrumentation
	Device-side Logging
	Host-side Detector
	Thread VC Compression
	Barriers
	Shadow Memory

	Experimental Setup
	Evaluation
	Concurrency Bug Suite
	Standard Benchmarks
	Bugs Discovered

	Related Work

