A Framework for Formal Verification of
Compiler Optimizations

William Mansky and Elsa Gunter

Department of Computer Science, University of Illinois at Urbana-Champaign,
Thomas M. Siebel Center, 201 N. Goodwin, Urbana, IL 61801-2302
{mansky1, egunter}@cs.illinois.edu

Abstract. In this article, we describe a framework for formally verify-
ing the correctness of compiler optimizations. We begin by giving formal
semantics to a variation of the TRANS language [6], which is designed
to express optimizations as transformations on control-flow graphs using
temporal logic side conditions. We then formalize the idea of correctness
of a TRANS optimization, and prove general lemmas about correctness
that can form the basis of a proof of correctness for a particular optimiza-
tion. We present an implementation of the framework in Isabelle, and as
a proof of concept, demonstrate a proof of correctness of an algorithm
for converting programs into static single assignment form.

Key words: optimizing compilers, theorem proving, program transfor-
mations, temporal logic

1 Introduction

Optimizations for time and memory efficiency are now an essential feature of
almost all modern compilers. These optimizations are often complex program
transformations, and establishing their correctness is a difficult process. In this
paper, we propose a general framework for expressing and verifying compiler
optimizations using established theorem-proving tools, with the goal of reducing
the burden of proving correct any particular optimization.

The problem of verifying a compiler optimization can be divided into two
main parts. The first is specification of the optimization by giving its semantics
in some mathematical formalism. For this purpose, we use the TRANS language,
proposed by Kalvala et al. [6], in which optimizations are defined as transfor-
mations on control flow graphs conditioned on the satisfaction of temporal logic
formulae. This approach is particularly amenable to proofs of correctness for sev-
eral reasons. First, it allows a more modular formulation of many optimizations
than the traditional algorithms, reducing the amount of context that needs to be
drawn in to the proof of each step of optimization. Second, it provides a uniform
framework for expressing various types of optimizations; by proving certain facts
about the fundamental operations of the language, we can take advantage of the
redundancy among different optimizations. Finally, the use of temporal logic
side conditions makes the assumptions of the transformation explicit in a formal

2 William Mansky, Elsa Gunter

sense, and can help narrow the gap between the theoretical semantics of the op-
timization and its actual implementation (e.g., by using model checking to verify
the condition before the transformation is performed). As part of the framework,
we provide an Isabelle implementation of TRANS, and an instantiation capable
of expressing the static single assignment (SSA) transformation.

The second part of the problem, and often the more intractable one, is verifi-
cation of the optimization. Given a definition of correctness, one must construct a
formal proof that the correctness property holds for the optimization (see for in-
stance Leroy [8]). The complexity of this process can vary significantly depending
on the choice of formalisms in previous steps. Optimizations are most commonly
specified as algorithms operating on program code, an approach that is easy
to implement but relatively difficult to verify. TRANS itself does not provide a
verification procedure, but it does break optimizations down into combinations
of simple graph transformations, offering a cleaner, more modular approach. By
identifying the basic operations involved in common optimizations, and proving
useful lemmas about their correctness, we hope to reduce the amount of effort
involved in the proof of correctness of any particular optimization.

To demonstrate the versatility of the framework, we have defined and verified
an algorithm for transforming programs into SSA form, a common precursor to
compiler optimizations [3,1]. The SSA transformation is particularly interesting
because it extends the underlying language of a program, adding ¢-functions
that are used to determine which instance of a variable should be used based on
the program’s execution trace. While the transformation cannot be expressed
in TRANS as originally presented, we offer a parametric view of TRANS which
allows us to easily add transformation-specific constructs such as indexed vari-
ables and ¢-functions. We then give a formal proof of correctness for the SSA
conversion using the Isabelle/HOL theorem prover, using the lemmas provided
by the framework. The result is a specification of the SSA transformation that
is guaranteed to preserve the semantics of the original program.

2 Language Framework

TRANS is a language for expressing program transformations in terms of condi-
tional rewrites on control-flow graphs. As such, in order to give its formal seman-
tics, we must first define the language of programs and formalize the notion of
control-flow graphs for those programs. We begin with the simple language Ly,
which captures some of the basic functionality of intermediate representations.
An Ly program is a list of instructions, and the number provided to a goto
command gives the target instruction as a position in the list. More formally:

expr:=expr op expr | num | var

instr:=var := expr | ret(ezpr) | if expr goto num | skip | goto num
graph_instr::=var := expr | ret(ezpr) | if expr | goto

The semantics of Ly have been formalized by Lacey et al. [7].
Since TRANS operates on control-flow graphs (CFGs), rather than directly
on programs, we must also formally define CFGs. Our definition is adapted from

A Framework for Formal Verification of Compiler Optimizations 3

that given by Kalvala [6], in which the nodes are labeled with single instructions
rather than larger basic blocks. A CFG is a record § = (N,E C N x N x
{seq, branch},I : N - graph_instr*,S : N - N), where A - B indicates a
partial function from A to B, satisfying the following properties:

1. the node set Ng contains the special nodes Entry and Ezit

2. the instruction labeling Ig is defined on all nodes except Entry and FEwit

3. Entry has no incoming edges, and Ezit has no outgoing edges

4. the outgoing edges of each other node are consistent with the instruction
labeling of that node

. the reflexive transitive closure of the successor relation Sg is a linear order

. if two nodes m and n are connected by an edge with label seq, then n is the
successor in Sg of m

Oy Ut

Of these, property 4 captures the core idea of a CFG, and its formal defi-
nition depends on the underlying language of the graph. In the case of L, the
appropriate edges for each instruction type are as follows:

— The Entry node has one outgoing edge, with label seq

a node labeled with := has one outgoing edge, with label seq

— a node labeled with if has two outgoing edges, one with label seq and one
with label branch

— a node labeled with goto has one outgoing edge, with label branch

— a node labeled with ret has one outgoing edge, with label seq, connecting
to the Ezit node

The inclusion of a successor function aids us in transforming CFGs back into
programs, so that TRANS transformations can be said to operate on programs
as well as graphs.

A useful property in establishing program correctness is recoverability. A CFG
is recoverable if it has a unique last node: that is, there is only one node that
is labeled with ret, and that node is the only predecessor of the Ezit node? [6].
Reasoning about the correctness of a transformation can sometimes be simplified
by adding the assumption that the graph in question is recoverable.

Since the framework is to be used to prove that certain transformations
preserve the semantics of CFGs, it must also include a notion of evaluation of
a CFG. We can give Ly CFGs a small-step execution semantics, based on the
semantics of Ly, in a manner similar to Leroy [8]. The configurations of a CFG
under execution are either intermediate configurations of the form (m,(,t), where
m is a memory, [is a node in the graph (a program point), and ¢ is an execution
trace®, or values v, indicating that the execution of the graph has terminated.

! Rather than retain the program’s instruction numbering in the graph, we use edges
to indicate the targets of goto and if statements, which also erases the distinction
between goto and skip nodes; we use goto for either sort of instruction.

2 Note that any program with at least one ret instruction can be restructured to
satisfy this condition, by replacing returns with jumps to a single return instruction.

3 While the execution trace t does not affect the outcome of any instruction in Lo,
we include it for generality; in particular, we will make use of it in adjusting the
framework to handle the SSA transformation.

4 William Mansky, Elsa Gunter

Then we can define the small-step relation —¢ for a graph G as follows, where
we use the notation out_edges G [to indicate the set of outgoing edges of [in G,
and assume standard evaluation semantics for arithmetic expressions:

out_edges G Entry = {(Entry,l’, seq)}
(m, Entry, t) —¢g (m,l’, Entry;t)

Igl)y=xz:=e (e,m) | v out_edges G 1 = {(I,V, seq)}
(m,1,t) —g (m[z «—v],l',1;t)
Ig(l) =1if e (e,m) 0 out_edges G 1 = {(l,1}, seq), (1,15, branch)}
(m,1,t) =g (m,1},1;t)
Ig(l)=1ife (e,m) v v#0 out_edges Gl ={(l,1},seq), (15 branch)}
(m,1,t) =g (m,15,1;t)
Ig(l) = goto out_edges G 1 = {(I,', branch)}

(m,1,t) —g (m,l',1;t)

Ig(l) = ret(e) (e,;m) Jv

(m,l,t) =g v

We can now define precisely what we mean when we say that two CFGs
are semantically equivalent. We define the set of results of a CFG G starting
from a configuration (m,,t) as the set of values in the transitive closure of the
small-step relation:

(m,1,t) g v
(m,l,t,v) € result G

(m,l,t) — (m/,U',1;t) (m/, ', l;t,v) € result G
(m,l,t,v) € result G

Then two graphs G and G’ are semantically equivalent if and only if
Vo.(empty, Entry, [],v) € result G < (empty, Entry, [],v) € result G’

That is, starting from the entry point, the empty environment, and the empty
trace, the result set of G is the same as the result set of G’. It is worth noting
that this is a partial correctness property, which ignores the possibility of non-
termination of the optimization.

3 The TRANS Language

Now we have enough background to define the TRANS language itself. We will
present here an overview of the syntax and semantics of the language, focusing on
the differences between our formulation and its original presentation; for further
details, see Kalvala et al. [6].

A Framework for Formal Verification of Compiler Optimizations 5

3.1 Overview

The basic units of TRANS are conditional graph rewrites of the form
Ay, As, .. A, if ¢, where the A;’s are actions to be performed on a graph,
and ¢ is a CTL-based side condition. Both the action and the condition may
contain metavariables, which are instantiated with program objects when the
transformation is applied. Actions are defined by

A ::= add_edge(n, m,t) | remove_edge(n,m,t) | replace n with p1, ..., pm
| split_edge(n, m, t,p)

The action add_edge(n,m,t) adds an edge labeled ¢ between n and m;
remove_edge(n, m,t) removes an edge with label ¢ between n and m;
replace n with pj,...,p,, replaces the instruction at n with the instructions
D1, ---y Pm; and split_edge(n, m, ¢, p), inserts a node with instruction p in the mid-
dle of the edge from n to m labeled t. Many common program transformations
can be expressed as a combination of these basic actions; in fact, many, including
conversion to SSA form, can be expressed using only the replace action. Rather
than using actual (graph) instructions, these actions take as arguments instruc-
tion patterns, in which metavariables can be used in place of program objects.

The side condition of a rewrite is an expression in CTL over paths in the
graph, with the atomic predicates node(n), which asserts that the metavariable
n matches the current node, and stmt(p), which asserts that the instruction
pattern p matches the instruction label at the current node. These atomic predi-
cates can be combined with the usual propositional connectives, as well as several
CTL-specific operators [4], which fall into one of two categories. The first con-
tains the next-time operators EX and AX, which assert that a statement holds
on some successor and all successors of the current node respectively. The second
group includes the until operators E¢p,U¢ps and Ap1U ¢, which assert that ¢
holds on all nodes until a node is reached on which ¢5 holds, along some path and
all paths forward from the current node respectively. TRANS also uses reversed
versions of the temporal operators, e.g. EX , which make analogous assertions
on nodes/paths backward from the current node. The formula ¢@n asserts that
¢ holds starting from the node n. In addition to the CTL formulae on paths,
TRANS side conditions include various basic predicates, such as freevar(z,e),
which asserts that x is a free variable of the expression e, or fresh(z), which as-
serts that « does not appear in any instruction in the graph under consideration.

In order to determine the concrete transformation represented by a rewrite,
a valuation, or map from metavariables to program objects, must be provided.
This valuation, usually denoted by o, is applied to both the action, to determine
the actual nodes and instructions to be rewritten, and the side condition, to
ensure that it produces a valid instance of the rewrite. A concrete instruction is
obtained from a pattern p by applying the function subst(o,p), which replaces
all the metavariables in p with the values given to them by o.

A TRANS expression, then, is a group of conditional rewrites combined with
any number of strategies, defined by

Tu=Ay, ..., Apif¢ | MATCH ¢ INT | Ty THEN Ty | Ty O T, | APPLY_ALL T

6 William Mansky, Elsa Gunter

The TRANS expression MATCH ¢ IN T executes T under the restriction that
its valuation must satisfy the condition ¢; T3 THEN T3 applies 77 and T5 in
sequence to a graph; 77 [0 Ty applies either 177 or Tp; and APPLY_ALL T
recursively applies T under any possible valuation until it is no longer applicable.

Two aspects of the TRANS language are provided as parameters. The first
parameter is the underlying language used to label the nodes of the CFGs; for
instance, TRANS on Ly CFGs has instruction patterns such as x := e and if e.
The second parameter is the set of basic predicates and atomic propositions used
in the side conditions. Any property of a valuation and/or a CFG can serve as
a predicate; any property of a valuation, a CFG, and a node can be used as
an atomic proposition. We will modify both of these parameters when applying
TRANS to the SSA transformation. Note that even TRANS on Lg can express a
variety of common optimizations; see Kalvala [6] for several examples, including
dead code elimination and strength reduction.

3.2 Transformation Semantics

For the most part, the semantics of our definition of TRANS are identical to those
given by Kalvala [6], with the addition of a few new basic predicates and local
(defined) predicates. However, we take a simpler approach to the semantics of
top-level transformations, and offer new definitions for the sequencing strategies
THEN and APPLY_ALL which we believe are more consistent with the intended
use of the strategies.

In the original presentation of TRANS, the semantics of a transformation
were given by a semantic function [.] : Transformation — (PartValuation x
FlowGraph — P(FlowGraph — FlowGraph)) taking a transformation, a par-
tial valuation (a partial function from metavariables to objects), and a graph,
and giving a set of functions on graphs. That is, given a partial valuation and
a graph, a transformation defined a set of functions to be applied to the graph.
However, these functions are all intended to be applied to the graph provided,
and are not guaranteed to be safe on any other graph (since the conditions
of the transformation are checked on the original graph). Thus, the seman-
tic function for a transformation can equally return the set of graphs result-
ing from the application of the transformation to the graph provided. We will
take this approach in the following definitions, and use a semantic function
[.] : Transformation — (PartValuation x FlowGraph — P(FlowGraph)).

Our second modification to the semantics deals with the compositional strate-
gies THEN and APPLY_ALL. Originally, the semantics of THEN were given by

[Ty THEN T3 |(7,G) = {f e g | f € [T1](7,G) A g € [T2](7,9)}

Intuitively, both 77 and T5 are evaluated on the graph G, and then the resulting
functions are composed. This has the disadvantage that it violates one of the
desired properties of TRANS, namely, that a transformation is only applied
when its side condition is satisfied. Since T5 is evaluated on G, and then applied
to f(G) for some f € [T1](r,G), the transformation it defines may be applied to

A Framework for Formal Verification of Compiler Optimizations 7

a graph on which its side condition does not hold. Using our modified semantic
function, we propose the alternate definition

[Ty THEN Ty](7,G) ={G" | 3¢'.¢" € [T1](r,G) NG" € [Tx](7,G")}

Under this definition, 75 is evaluated not on the original graph G, but rather on
the graph G’ to which it will be applied, restoring the link between the condition
and the transformation.

Our treatment of the APPLY_ALL strategy is similar, but more complex. The
intention of the strategy is to apply a transformation everywhere in the graph,
i.e., until the transformation can no longer be applied. The original semantics
given for APPLY _ALL were

[APPLY_ALL T(r,G) = {f1© f20 0 fu | fi € [T1(, @)\ {f1, - fi1}}

This definition again allows the application of a transformation to a graph on
which the side condition has not been checked, and also suffers from the problem
that [T (7, G) may not be finite (or even countable). As a matter of fact, since the
graph under consideration changes after each application of T, and the condition
must be re-evaluated, the APPLY_ALL construct is essentially recursive. Thus,
in order to give it the desired semantics, we must give it an inductive definition.
We begin by defining an inductive set apply_some containing all graphs produced
from applying T' some number of times (possibly zero) to G:

G € apply_some(T,T,G)
G e [T(r,G) G" € apply-some(T,7,§G’)
G" € apply_some(T,1,G)
Then, by removing all of the intermediate graphs, we can define APPLY_ALL

as yielding exactly the set of graphs in which 7 has been performed until it can
no longer be applied:

[APPLY_ALLT](7,G) = apply_some(T,7,G)\{G' | 3G".G'# G"NG" € [T (7,G')}

Under this definition, we once again have the property that a transformation
is never applied to a graph on which its condition has not been evaluated, and
we also know that T will no longer be applicable to the resulting graphs?. As
part of the implementation of the framework, we have formalized the syntax
and modified semantics of TRANS in Isabelle; the algebraic definitions can be
translated directly into Isabelle datatypes and functions.

4 Theoretical Properties of TRANS

Although the TRANS approach has not previously been used to verify optimiza-
tions, the modularity provided by strategies and the use of CTL side conditions

4 Note that if the recursive application of T is non-terminating, the set defined by
APPLY_ALL T is empty.

8 William Mansky, Elsa Gunter

make it well suited for formal verification. In this section, we state and sketch the
proof of several simple but powerful properties of TRANS expressions, dealing
with the effects of strategies and some common transformations. These lemmas
also suggest a general methodology for verifying optimizations using TRANS:
the first lemma can be used to break an optimization down into component
transformations, and the following lemmas provide useful facts about common
basic transformations.

When verifying a transformation, we frequently want to prove that some
property of the program under consideration is preserved; that is, if it holds for
the original program, then it also holds for the transformed program. Formally,
we say that a transformation T' preserves a property P of graphs if for all partial
valuations 7 and graphs G, if P holds on G, then for all result graphs G’ €
[T)(1,G), P holds on G'. We expect that if a group of transformations preserves
some property, then any combination of those transformations also preserves the
property. In fact, we can prove that the various strategies preserve any property
that their component transformations preserve:

Lemma 1. Suppose that T and T’ preserve some property P. Then
MATCH ¢ INT, T THEN T, T OT’, and APPLY_ALL T preserve P.

Proof. For every strategy other than APPLY_ALL, the result follows directly
from the semantics of the strategy. We can show that APPLY_ALL T preserves
P by induction on the number of applications of T'. a

This result allows us to break down the problem of showing that a complex trans-
formation preserves a property into one of showing that each of its individual
components (sub-expressions of the form Ay, ..., A,, if ¢) preserves the property.
In the case study below we will use this lemma to show that a transformation
preserves recoverability, but it could be used for any invariant on a graph.

The simplest transformation is one of the form replace n with p, where p is
a single instruction pattern. This is the TRANS method of modifying a single
instruction in the graph. Transformations of this form have many useful proper-
ties: for instance, they do not change the nodes, edges, or successor relation of
a graph. In addition, we can give a simple condition under which such transfor-
mations preserve recoverability.

Lemma 2. Consider a recoverable graph G = (N, E, 1, S), and a valuation o. If
Ig a(n) is the same type of instruction® as p, then G' = [replace n with p](c, G)
is recoverable.

Proof. The only effect of the single-instruction replace is to replace the instruc-
tion at o(n) with subst(o,p). Since the two instructions have the same type, this
replacement does not affect the recoverability of the graph. a

This is a powerful lemma because it can be proved at the level of actions, and thus
applies to any transformation using an action of this form. In other words, any

5 Le., they are both if-statements, or both goto-statements, etc.

A Framework for Formal Verification of Compiler Optimizations 9

transformation which performs only replacements of instructions by instructions
of the same type is guaranteed to preserve recoverability. As we will see in our
case study, some surprisingly complex transformations fall into this category.

A slightly more complicated transformation is one of the form replace n with
P1,---s Pm, Which replaces an instruction with a list of instructions. In this case,
the nodes, edges, and successor function are all affected, but in a strictly local
way. Once again, we can identify a common case in which such transformations
preserve recoverability: that of inserting a list of assignments before some point
in the program.

Lemma 3. Consider a recoverable graph G = (N, E,I,S), and a valuation
o. If o(i) = Ig o(n) and p1,...,pm are all assignment patterns, then G' =
[replace n with p1, ..., pm,1](0, G) is recoverable.

Proof. The effect of this replace action is to insert a sequence of nodes before
o(n). Since each inserted node is connected to its successor with a seg-edge,
which is consistent with any assignment instruction, G’ is still a CFG, and since
no ret instructions are added or removed, G’ is still recoverable. O

Note that the p;’s must be assignments because the edges inserted between the
new nodes are labeled with seq. In fact, this lemma can be generalized to any
instruction type for which the appropriate outgoing-edge set is a single seg-edge.

Lemma 4. Consider a recoverable graph G = (N, E,I1,S), and a valuation o. If
o(t) =1G o(n) and p1,...,pm are patterns consistent with an outgoing-edge set
of a single seq-edge, then G' = [replace n with p1, ..., pm,1](0,G) is recoverable.

In the case of Ly, these two statements are equivalent, but in more comprehensive
languages, such as the L; language presented below, the more general statement
of the lemma will be more useful.

5 The SSA Transformation

5.1 Static Single Assignment Form

One common program transformation in optimizing compilers is conversion to
SSA form. While not in itself an optimization, this conversion allows for the
application of various other optimizations and analyses [3,1]. A program in SSA
form, as its name suggests, has no more than one assignment statement for each
variable in the program. This is accomplished by labeling each instance of each
variable with a subscript, or index; a unique index is given to each definition
of a variable, and each use is given the index of the definition that reaches
it. At join-points in the program, where two or more branches converge, there
may be more than one reaching definition of a given variable; in this case, a
o-function is inserted at that point. The ¢-function takes as arguments all the
indexed instances of the variable that could reach the current point, chooses the
appropriate instance based on the trace of the current execution, and assigns it

10 William Mansky, Elsa Gunter

Fig. 1. Converting a CFG to SSA form

to a new instance of the variable. In this way, for every use of a variable in any
instruction other than a ¢-function, there is exactly one reaching definition, and
so every variable can be labeled unambiguously with an index.

From a verification perspective, the SSA transformation is particularly inter-
esting because 1) it introduces new variables into the program, and 2) it extends
the language of the program by adding ¢-functions. As such, we decided to test
the power of the framework by using it to state and prove the correctness of
SSA.

5.2 Defining SSA in TRANS

TRANS on Lg is not sufficient to express the SSA transformation. However, we
can extend Lo to a new language L, that can support SSA by adding two new
constructs: an indexed variable var,.,, which can be used anywhere a variable
can be used, and a ¢-instruction var := ¢(var, ..., var). The appropriate outgoing
edge set for a ¢-instruction is a single node with label seq, as in the case of an
ordinary Ly assignment instruction. The small-step evaluation rules for the ¢-
instruction are as follows, where find_in_trace vy, ..., v, t G gives the most recent
definition of any of the x;’s in the trace t:

Ig(l) =T = ¢(U17 ...7'Un) ﬁnd,m,tmce V1, .oy Up t Gg=1
out_edges G 1 = {(I,I, seq)}

(m,1,t) —g (m[z < m(v)],l',1;t)

Ig(l) = x := ¢(v1, ..., vp) Yo' find_in_trace vy, ...,vn t G # V'
out_edges G 1 = {(I,I', seq)}

(m, 1 t) —g (m, 1, 1;t)

Note that we now make use of the execution trace included in the configuration.
We include a rule to handle the corner case in which none of the variables in the
¢-function are defined; in this case, the ¢-function has no effect on the memory.
We chose this outcome, rather than allowing the execution to become stuck, to
most closely mimic the behavior of the original graph: if a variable was undefined,
the program would not become stuck until it reached a use of the variable, and

A Framework for Formal Verification of Compiler Optimizations 11

inserting a ¢-function should not force a crash in a program that would not
originally have crashed.

We also add several SSA-specific basic predicates to TRANS, such as
fresh_new(x, j). The predicate fresh-new(z,j) holds when x is a variable, j is
a number, and the indexed variable z; does not appear anywhere in the pro-
gram. We can use CTL on CFGs to define useful propositions on nodes such as
reaches(z, j), which holds when x; reaches the current node, and multi_defs(z),
which holds when two different instances of x reach the current node.

We can now express the SSA conversion in TRANS on L;. We break the
conversion down into four stages, as follows: add_indexr adds indices to the left-
hand side of each assignment in the program. add_phi inserts ¢-functions (with
empty bodies) at every point reached by multiple definitions®. update updates
each use of a variable with the index of the reaching instance, and fills in the
bodies of ¢-functions. Finally, refactor transforms each indexed variable (which
is semantically equivalent to the variable obtained by dropping the index) to an
entirely new variable, giving it a separate location in memory. The conversion
can be written in TRANS as follows:

add_indez ::= replace n with (5 := e)
if (varlit(z) A stmt(x:=e)@Qn A freshnew(x,k))

The first step of the conversion is the simplest: each definition of a variable x is
assigned a unique index k, without making any other changes to the graph.

add_phi ::=
replace n with (xy := ¢(), 1)
if (stmi(i) @Qn A multi_defs x j1 jo @Qn A fresh_-new x k A
Iny (Fne ((—ny s na) A (ET(node(ny) A EX node(nz)) @ n)) A
ATy, s (stmt(y := &(s)) AN —x is y))U(—Ty, s (stmit(y := ¢(s)))) Qn)

In the second step, we insert the ¢-functions at the proper locations in the pro-
gram. Whereas in traditional algorithmic descriptions of the transformation, an
analysis must be performed to determine where to place ¢-functions, the TRANS
approach allows us to explicitly state the condition under which a function should
be inserted. The second half of the condition ensures that the ¢-functions are
only inserted at join points, and that no more than one ¢-function per variable
is inserted at each join point.

update ::= MATCH (reaches x k Q n) IN
(replace n with (y := e[zy]) if stmi(y :=e[z]) @ n O
replace n with (if e[z]) if stmt(if e[z]) @ n O
replace n with (ret(e[zy])) if stmt(ret(e[x])) @ n O
replace n with (z 1= ¢(zk, s)) if (stmit(zr = ¢(s)) QnAzy ¢ 3))

In the third step, each use of a variable is annotated with the index of the
reaching definition. Each ¢-function is also populated with the reaching instances

5 Note that this formulation of the conversion may not compute a minimal number of
¢-functions; this could be achieved by adding an additional condition to add_phi.

12 William Mansky, Elsa Gunter

of the variable to which it is assigned.

refactor ::=

MATCH (fresh(z) A (stmt(zy := e) V stmt(zy := ¢(s))) @n) IN

((replace n with (z :=e) if stmt(xy : =€) @n O

replace n with (z := ¢(s)) if stmt(xg := ¢(s)) @ n) THEN

APPLY _ALL (replace m with(y := f[z]) if stmt(y := flag]) @ m O
replace m with (if f[z]) ifstmt(if flzx]) @ m O
replace m with (ret(f[z])) if stmt(ret(f[z])) @ m O
replace m with (y := ¢(z,t)) if stmt(y := ¢(zg,t)) Q m))

The final step is to replace each indexed variable with an entirely new variable.
While this is not explicitly a part of most SSA algorithms, it is necessary because
of the memory model used in our implementation, in which every instance of a
variable points to the same memory location. The advantage of this approach
is that each individual step can be shown to preserve the program’s semantics,
allowing for a more modular proof of correctness, as will be shown below.

Each step performs the desired transformation for one variable, so we use the
APPLY _ALL strategy to extend it to the entire program, giving the complete
SSA transformation:

conversion := (APPLY_ALL add_index) THEN (APPLY_ALL add_phi) THEN
(APPLY _ALL update) THEN (APPLY_ALL refactor)

5.3 Proving SSA Correct

Given the definition of SSA in TRANS, and the lemmas shown above, we are
now ready to construct a proof of correctness for SSA. In fact, using the Isabelle
implementation of the framework, we have done exactly that, proving that any
graph produced by the conversion is semantically equivalent to the input graph.
We will outline the proof below. Since we have taken the trouble to express
the conversion in as modular a fashion as possible, we can verify it by proving
appropriate theorems for each of the individual steps, and then combining them
with the simple facts about the strategies shown above.

Thanks to the power of the framework, we can easily show that each step of
the transformation preserves recoverability.

Lemma 5. add_index, add_phi, update, and refactor all preserve recoverability.

Proof. All of the actions in add_index, update, and refactor are of the form
specified in Lemma 2, so they preserve recoverability. The action in add_phi is
of the form specified in Lemma 4, so it also preserves recoverability. Thus, we
can conclude that the conversion preserves recoverability. a

Corollary 1. The complete SSA conversion preserves recoverability.

Proof. Since recoverability is a property of a graph, by Lemma 1 the conversion
preserves recoverability if each of its steps preserves recoverability. a

A Framework for Formal Verification of Compiler Optimizations 13

Now we can demonstrate the correctness of the transformation. Once again,
we will proceed modularly, stating an appropriate lemma for each step of the
conversion. Of course, the steps are not independent of each other; they are
semantics-preserving only in combination. However, we can separate them by
stating appropriate conditions that must hold for each step to be correct, and
then showing that these conditions hold after the previous step. Ultimately, we
will have shown not only that the results of the transformation are semantically
equivalent to its input, but also that the resulting graphs are in SSA form. We can
identify three properties that should hold at various points in the transformation:

1. The graph has no more than one definition for each variable instance it
contains.

2. There is no more than one instance of each variable in the graph that reaches
each node labeled with a non-¢ instruction, and each instruction uses a
variable instance x; only if x; reaches the node labeled with the instruction.

3. If an instance of a variable z; reaches a node in the graph labeled with a
¢-function, and another instance xj is in the body of the ¢-function, then
x; is also in the body of the ¢-function.

Note that if a graph has no indexed variables, then property 1 is sufficient to
imply that the graph is in SSA form, since there is at most one instance of each
variable.

Lemma 6. Consider a CFG G with no ¢-functions. Then every graph in
[add_index|(empty,G) is semantically equivalent to G and has no ¢-functions.
Furthermore, every graph in [APPLY_ALL add_index](empty,G) is semanti-
cally equivalent to G, has no ¢-functions, and has property 1.

Lemma 7. Consider a recoverable CFG G with no non-empty ¢-functions such
that property 1 holds for G. Then any graph in [add_phi]|(empty,G) is seman-
tically equivalent to G, has no non-empty ¢-functions, and has property 1. Any
graph in [APPLY _ALL add_phi](empty, G) also is semantically equivalent to G,
has no non-empty ¢-functions, and has property 1.

Lemma 8. Consider a CFG G with property 1 such that every ¢-function in
G is of the form x; = ¢(xp1,...,Tpn) — i.e., every variable in the body of the
o-function has the same base as the variable on the left-hand side. Then every
graph in [update](empty, G) is semantically equivalent to G, has property 1, and
has only ¢-functions of the form x; = ¢(zk1, ..., Tkn). Furthermore, every graph
in [APPLY_ALL wupdate|(empty,G) is semantically equivalent to G, has only
o-functions of the form xj = ¢(xp1, ..., Tkn), and has properties 1, 2, and 8.

Lemma 9. Consider a CFG G with properties 1, 2, and 3. Then every graph in
[refactor](empty, G) is semantically equivalent to G and has properties 1, 2, and
3. Furthermore, every graph in [APPLY_ALL refactor|(empty,G) is semanti-
cally equivalent to G, has properties 1, 2, and 3, and has no indezed variables.

14 William Mansky, Elsa Gunter

Theorem 1. Consider a recoverable Lo CFG G. FEvery graph in
[conversion](empty,G) is semantically equivalent to G, and is in SSA
form.

Proof. We will proceed by breaking the conversion into steps, and then make
use of the above lemmas. Since Ly does not contain ¢-functions, we know
that G has no ¢-functions. Thus, by Lemmas 5 and 6, every graph in
[APPLY_ALL add_index](empty,G) is recoverable, is semantically equivalent
to G, has no ¢-functions, and has property 1. If a graph has no ¢-functions, then
it certainly has no non-empty ¢-functions. Thus, by Lemma 7, every graph in
[(APPLY_ALL add_indexz THEN (APPLY_ALL add_phi)](empty,G) is seman-
tically equivalent to G, has no non-empty ¢-functions, and has property 1. If
every ¢-function in a graph is empty, then certainly every ¢-function is of the
form x; = ¢(xk1, ..., Tkn). Thus, by Lemma 8, every graph in

[(APPLY_ALL add_inder) THEN
(APPLY_ALL add_phi) THEN (APPLY _ALL update)|(empty, G)

is semantically equivalent to G, and has properties 1, 2, and 3. Finally, by Lemma
9, we can conclude that every graph in [conversion](empty,G) is semantically
equivalent to G, has properties 1, 2, and 3, and has no indexed variables, implying
that it is in SSA form. ad

6 Conclusions and Further Research

We have outlined a new approach to proving the correctness of compiler op-
timizations, as well as an Isabelle-implemented framework to support this ap-
proach. We have clarified and formalized the semantics of the TRANS language,
making it into a tool for use in constructing fully formal proofs of correctness for
program transformations; the Isabelle code can be found online [10]. By using
TRANS to state a transformation in terms of conditional rewrites on CFGs, a
verifier can take advantage of the general lemmas we have established about the
semantics of TRANS. We have demonstrated the generality of this approach by
parameterizing TRANS to express the SSA transformation, and then presented
a new and relatively concise proof of correctness for the transformation within
our framework. This is, to the best of our knowledge, the first machine-assisted
verification of an optimization expressed in TRANS, and the first verified SSA
conversion of any sort. We hope that the approach demonstrated here will sig-
nificantly reduce the difficulty of the problem of verifying optimizations.

The Ly language on which our implementation of TRANS is based is rela-
tively simple, and does not include some common features of intermediate lan-
guages, such as arrays and function calls. Our experience with L; suggests that
parameterizing TRANS with more expressive languages can be easily accom-
plished; the more difficult aspect of adding new features is providing a semantics
for programs with these features and proving related lemmas about TRANS.

A Framework for Formal Verification of Compiler Optimizations 15

This would bring the framework a step closer to dealing with real-world inter-
mediate languages, and enable it to handle a wider range of optimizations.

The tendency to leave compiler optimizations unverified might be defended
with the argument that most optimizations have been in use for decades with-
out major problems. However, bugs have been discovered even in C compilers
[11], and the situation is even more complicated when dealing with concurrency.
Most optimizations for parallel programs are experimental and have not been
widely field-tested, and it is much more difficult to put forward a convincing
informal justification for a parallel optimization. For this reason, we believe that
compilers for parallel languages particularly stand to benefit from formal proofs
of correctness. While formalisms such as control-flow graphs and CTL are suf-
ficient for expressing and verifying optimizations on sequential programs, they
are not as obviously applicable to the case of parallel programs. However, we
believe that concurrent analogues of these formalisms, such as parallel program
graphs [14] and alternating-time temporal logic [2], will allow us to extend our
approach to parallel optimizations.

7 Related Work

This research builds on the work of Lacey et al. [7] and Kalvala et al. [6], who
have defined the core concepts of the TRANS language and used it to express
and (on paper) verify several optimizations.

One of the first computer-assisted verifications of a compiler was due to
Moore [12]. The source language of this compiler was very low-level, and the
compiler did not perform any optimizations.

Leroy [9] has developed a Cog-based framework for the verification of opti-
mizations that depend on dataflow analysis. Code transformations operate on
instructions, and are verified by comparing the semantics of the transformed
instructions to that of the original instructions under conditions provided by the
dataflow analysis. However, this approach can handle only limited modifications
to program structure. Visser et al. [16] use a rewrite system to define optimiza-
tions on programs in a functional language. Their system includes a variety of
rewriting strategies, but does not deal with conditional rewriting or verification.

Translation validation [13,15] is another method of verifying compiler op-
timizations. In this approach, rather than proving the optimization correct for
all programs, an automatic verifier is used on the results of each application of
the optimization to ensure that the resulting program has the same semantics
as the original program. Since the process is fully automated, the verification
process is considerably more lightweight, but the range of optimizations that
can be handled is more limited.

Various work has been done on the formal properties of code already in SSA
form; see for instance Blech and Glesner [5], who have used Isabelle to verify an
algorithm for code generation from SSA.

Acknowledgments: We would like to thank Sara Kalvala and Richard War-
burton for introducing us to TRANS and clarifying various points.

16 William Mansky, Elsa Gunter
References
1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-

10.
11.

12.

13.

14.

15.

16.

grams. In: POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages. pp. 1-11. ACM, New York, NY,
USA (1988)

. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.

ACM 49(5), 672-713 (2002)

Appel, A.W.: Modern Compiler Implementation in ML. Cambridge University
Press, New York, NY, USA (2004)

Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
POPL ’81: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages. pp. 164-176. ACM, New York, NY, USA (1981)
Blech, J.O., Glesner, S.: A formal correctness proof for code generation from ssa
form in isabelle/hol. In: Proceedings der 3. Arbeitstagung Programmiersprachen
(ATPS) auf der 34. Jahrestagung der Gesellschaft fiir Informatik. Lecture Notes
in Informatics (September 2004), http://www.info.uni-karlsruhe.de/papers/
Blech-Glesner-ATPS-2004.pdf

Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. ACM Trans. Program. Lang. Syst. 31(4), 1-48 (2009)
Lacey, D., Jones, N.D., Van Wyk, E., Frederiksen, C.C.: Proving correctness of
compiler optimizations by temporal logic. In: POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages.
pp. 283-294. ACM, New York, NY, USA (2002)

Leroy, X.: Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In: POPL ’06: Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages. pp. 42—
54. ACM, New York, NY, USA (2006)

Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363-446
(2009)

Mansky, W.: TRANS in Isabelle. http://www.cs.illinois.edu/homes/mansky1
McKeeman, W.M.: A formally verified compiler back-end. Digital Technical Jour-
nal 10(1), 100-107 (1998)

Moore, J.S.: A mechanically verified language implementation. J. Autom. Reason.
5(4), 461-492 (1989)

Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS ’98: Pro-
ceedings of the 4th International Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems. pp. 151-166. Springer-Verlag, London, UK (1998)
Sarkar, V.: Analysis and optimization of explicitly parallel programs using the
parallel program graph representation. In: LCPC ’97: Proceedings of the 10th
International Workshop on Languages and Compilers for Parallel Computing. pp.
94-113. Springer-Verlag, London, UK (1998)

Tristan, J.B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. In: POPL ’08: Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages. pp. 17-27. ACM, New York, NY, USA (2008)

Visser, E., Benaissa, Z.e.A., Tolmach, A.: Building program optimizers with rewrit-
ing strategies. SIGPLAN Not. 34(1), 13—26 (1999)

