
Toward a Multi-method Approach to Formalizing
Human-automation Interaction and Human-human

Communications

Ellen J. Bass∗, Matthew L. Bolton∗, Karen Feigh†, Dennis Griffith‡, Elsa Gunter‡, William Mansky‡, John Rushby§

∗Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA 22904, {ejb4n,mlb4b}@virginia.edu
†School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30313, kfeigh@isye.gatech.edu

‡Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, {dgriffi3,egunter,mansky1}@illinois.edu
§Computer Science Laboratory, SRI International, Menlo Park, CA 94025, rushby@csl.sri.com

Abstract—Breakdowns in complex systems often occur as a
result of system elements interacting in ways unanticipated by
analysts or designers. The use of task behavior as part of a
larger, formal system model is potentially useful for analyzing
such problems because it allows the ramifications of different
human behaviors to be verified in relation to other aspects of
the system. A component of task behavior largely overlooked to
date is the role of human-human interaction, particularly human-
human communication in complex human-computer systems. We
are developing a multi-method approach based on extending
the Enhanced Operator Function Model language to address
human agent communications (EOFMC). This approach includes
analyses via theorem proving and future support for model
checking linked through the EOFMC top level XML description.

Herein, we consider an aviation scenario in which an air
traffic controller needs a flight crew to change the heading for
spacing. Although this example, at first glance, seems to be one
simple task, on closer inspection we find that it involves local
human-human communication, remote human-human commu-
nication, multi-party communications, communication protocols,
and human-automation interaction. We show how all these varied
communications can be handled within the context of EOFMC.

Index Terms—Task analysis, human-automation interaction,
human-computer interaction, formal verification, theorem prov-
ing, model checking

I. INTRODUCTION

Failures in safety-critical systems can arise due to interac-
tions between system elements, including human operators.
Human communication processes, including human-human
communication and human-automation interaction, are im-
portant to the operation of safety critical systems but have
contributed to failures in domains including aviation [1], [2], [3],
[4]. The use of task behavior as part of a larger, formal system
model is potentially useful for analyzing such safety-critical
systems as the potential ramifications of human behaviors can
be verified in relation to other aspects of the system.

The Enhanced Operator Function Model (EOFM) [5] is one
method of specifying human behavior in a way amenable to
formal analysis. In this paper, we are extending EOFM as
part of a multi-method approach where analyses via theorem
proving and model checking are linked through a top-level XML
description of human task behavior. Our model of cooperative

activity involves two or more humans and their automated
systems functioning within specified roles. When collocated,
human agents can communicate with each other verbally and
through gesturing, and when not, through the use of phone,
radio or video communications as well as text data (electronic
mail, and text and instant messaging). Human operators perform
activities manually and through the use of automated devices.
Cooperative activity may involve individual agents completing
activities asynchronously or synchronously. They may complete
certain activities interleaved in a coordinated manner. The order
of activities may be pre-specified or may depend upon the status
of the activities or other system components or events.

Herein we consider an example from aviation where the
human agents are an air traffic controller (ATCo) and the two
pilots of an aircraft with modern automation, the pilot flying
(PF) and the pilot monitoring (PM). This example displays
the need to handle different types of communication (verbal
and gestures) within a single modeling framework. We focus
on human communications, on pilot interaction with other
pilots and with automation, and on the properties needed to be
guaranteed by the pilots to ensure that the aircraft is always
compliant with clearances. The following sections describe our
new formalisms, provide a heading example, sketch the proof
showing how safety properties can be guaranteed, and discuss
future and related work.

II. EOFM WITH COMMUNICATION (EOFMC)

A. Overview and Syntax

We have developed a variant of EOFM, called EOFMC
(EOFM with Communication). EOFM is an XML-based,
platform- and analysis-independent language for describing
task analytic models [5]. The EOFM language allows for
the modeling of a human operator as an input/output system.
Inputs may come from the human-device interface, environment,
mission goals, and other human operators. Human actions
are outputs. The operator’s task model describes how human
actions are generated based on input (from device interfaces, the
environment, and human communications) and local variables

978-1-4577-0653-0/11/$26.00 ©2011 IEEE 1817

(representing perceptual or cognitive processing). When trans-
lated for use in model checking, instantiated EOFM models
can be integrated into formal system models. Input, local and
output variables updated in different steps reflect the state of
the human operators, automation, or other system elements.

Each human operator model is a set of EOFM task models
that describe goal-level activities. Activities decompose into
lower level activities and eventually atomic human actions.
Decomposition operators specify the cardinality of and temporal
relationship between the sub-activities or actions:

• or seq, or par – 1 or more sub-activities or actions must
execute either one at a time or with any possible overlap
respectively;

• optor seq, optor par – 0 or more sub-activities or actions
must execute either one at a time or with any possible
overlap respectively;

• and seq, and par – all sub-activities or actions must
execute either one at a time or with any possible overlap
respectively;

• sync – all actions (activities are not allowed in sync
decompositions) must execute at the same, synchronized
time;

• xor – exactly 1 sub-activity or action must execute; and
• ord – all sub-activities or actions must execute one at a

time in a specific order.
EOFM activities can have conditions (Boolean expressions

in terms of input, output, and local variables, and constants)
that specify what must be true before an activity can execute
(precondition), when it can execute again (repeat condition),
and what is true when it has completed execution (completion
condition). Each EOFM atomic action is either an assignment to
an output variable (indicating an action has been performed) or
a local variable (representing a perceptual or cognitive action).
All variables are defined in terms of constants, user-defined
types, and basic types.

EOFM’s notation allows for the definition of global constants
(constant nodes) and user-defined types (userdefinedtype
nodes). It then allows multiple human operators to be de-
fined (humanoperator nodes). Each human operator defines
variables representing inputs from the human-device inter-
faces and environment (inputvariable nodes), local variables
(localvariable nodes), and human action outputs (humanaction
nodes). Then, a humanoperator node contains one or more
eofm nodes, each defining a goal-directed task: a hierarchy
of activity nodes and action nodes which define human task
behavior. activity nodes contain conditions and decomposition
operators controlling how tasks execute. action nodes are leaves
in the hierarchy and reference humanaction nodes (indicating
that a human action is performed) or allow values to be assigned
to local variables.

The heading change analysis is based on EOFMC, an
extension of EOFM to support human actions that set specific
values, activities shared across multiple human operators and
human-human communications. Three modifications were made
to existing EOFM constructs (Fig. 1). The syntax for constant
nodes was updated to allow for the definition of constant

mappings and functions through the addition of optional (zero
or more) parameter attributes for defining function arguments.

The notation for defining human action outputs
(humanaction nodes) now allows for an additional
type of behavior called setvalue. Originally, human actions
were treated as binary (either being performed or not being
performed). They could exhibit two behaviors: autoreset,
where the action would be performed and then automatically
transition to not being performed; and toggle, where the
execution of the action would toggle between being performed
and not being performed. When a human action has the new
setvalue behavior, the modeled operator can set a specific
value in a single action. This type of human action has an
additional attribute specifying the type of the value being set (a
reference to a userdefinedtype or a basictype) or a reference
to a local variable which will contain the value to be set.

Be
co
me

s

constant @ name DD ID

0.. @ parameter DD string

@ userdefinedtype DD IDREF

@ basictype DD string

DD string

constant @ name DD ID

@ userdefinedtype DD IDREF

@ basictype DD string

DD string

∞

humanaction @ name DD ID

@ behavior autoreset

toggle

Be
co
me

s

humanaction @ name DD ID

@ behavior autoreset

toggle

@ behavior setvalue

@ userdefinedtype

@ basictype

@ localvariable

DD IDREF

DD string

DD IDREF

@ humanaction DD IDREF

@ localvariable DD IDREF

DD string

action

Be
co
me

s

action @ humanaction DD IDREF

@ localvariable DD IDREF

DD string

Fig. 1. Changes made to the notation of EOFM notation [5] depicted in
Relax NG schema diagram notation [6]. Changes made to the constant nodes
allow for the definition of parameters for function and mapping declarations.
humanaction nodes have been updated to allow for human action outputs that
set specific values. Changes to action nodes (which occur at the bottom of
the task analytic model hierarchy) allow for the setting of values.

1818

humancomaction @ name DD ID

@ behavior setvalue

@ userdefinedtype DD IDREF

@ basictype DD string

@ localvariable DD IDREF

Fig. 2. The Relax NG schema diagram notation [6] for the new human
communication action (humancomaction).

The third change impacts how actions are specified (action
nodes). In base EOFM, only two types of actions could be
performed: a humanaction (a reference to a humanaction
node) or an assignment to a local variable (localvariable). The
new modifications provide additional action possibilities. An
optional data field was added so that an action referencing a
humanaction could set a value (setvalue behavior).

Two additions were also made to the EOFM notation. The
first added a new type of human action, humancomaction,
for supporting human-human communication actions (Fig. 2).
This is a special type of human action that is defined in the
same way as a setvalue human action with the presumption
that, when instantiated, each humancomaction represents a
single communication modality. They are defined at the same
location as humanaction nodes (Fig. 3).

EOFMC introduces the idea of shared tasks, which represent
coordinated group activities undertaken by two or more human
operators while allowing for human to human communication.
These shared tasks are optionally defined after humanoperators
in sharedeofm nodes (Fig. 3). Each sharedeofm contains two
or more associate nodes explicitly defining the participating
human operators. Tasks themselves are represented with the
same hierarchy of activities and actions as in individual human
operator tasks.

There are however, two differences. Firstly, in each activity,
one can define zero or more associate nodes to further
restrict which human operators are involved. Each action
node belongs to an individual human operator and does not
require an explicitly defined associate1. The second difference
relates to activity decomposition. While the activities in these
shared tasks can decompose in the same ways as their single-
operator counterparts, they have an additional decomposition
option. This new com decomposition operator, shown in Fig.
3, explicitly models human-human communication. It is a
special form of the sync decomposition operator and assumes
information is being transferred between human operators.
The decomposition must start with the performance of a
humancomaction, which commits a value (communicated
information). The decomposition ends with one or more actions
explicitly pointing to local variables to allow other human
operators to register the information communicated via the
humancomaction.

1The associates of each activity or action must be a subset of the associates
of its ancestors. If no associates are defined in an activity, the associates are
inherited from its parent activity.

We have developed an XML-based syntax for EOFMC that
extends the syntax of EOFM, as well as a RelaxNG specification
that accepts expressions conforming to this grammar and checks
that all variables are declared before use. The formal semantics
of EOFMC allow automated translation into the SAL model
checker [5], [7]. As discussed in the following section, EOFMC
has been given formal transition semantics in the theorem prover
Isabelle. To support formal reasoning about EOFMC in Isabelle,
we have given a more compact abstract syntax for EOFMC.
There is a precise correspondence between the abstract syntax
of EOFMC and the RelaxNG specification. From an EOFMC
task behavior in the abstract syntax, we have a procedure that
automatically generates an XML document that conforms to
the RelaxNG specification.

B. Semantics

Since EOFMC activities are specified as hierarchical trees,
we use tree structures called task trees to model the semantics
of tasks. In a task tree, internal nodes correspond to the
specifications of activities and leaves correspond to atomic
actions. Each node in the tree is additionally labeled with
one of three states: Ready, Executing, and Done. During
execution of a task, these labels are updated. A Ready task
may begin executing as soon as all necessary conditions are
met; an Executing task is in progress or waiting to be allowed
to complete; a Done task has completed, and may return to the
Ready state if its specification allows it to reset. Each node
moves between these three states in a manner governed by
both its explicit conditions (precondition, completion condition,
repeat condition) and a set of implicit conditions, called the
start, end, and reset conditions, that are determined by the
decomposition operator of the task and the states of parent,
sibling, and child tasks. For instance, if a task is part of an
ordered (ord) decomposition, its start condition will ensure
that it cannot begin to execute until the previous task in the
order has completed. The details of the implicit conditions and
their effects on state transitions are the same as in the previous
presentation of EOFM [5], with one slight revision: an activity
cannot transition from Ready to Done unless its start and end
conditions are both satisfied. In order to compute these implicit
conditions, we associate with each activity an accompanying
context, which has the structure of the top-level task tree under
consideration with a hole at the location of the activity. These
contexts will be carried along in any execution.

Given an environment lenv supplying values for the local
variables, a sequence of global environments envs supplying
the history of values for input and output variables, a function
val giving values for expressions (using lenv and hd(envs), the
most recent global environment in envs), and a function sys
mapping envs to a new global environment env representing
the system’s response to the human actions, a complete
EOFMC specification is modeled by a set of human operators
[h1, . . . , hm], a set of task trees for shared activities [s1, . . . , sn]
and a set of rules for how they may transform. Each human
operator has a name n and a collection of task trees [t1, . . . , tl],
one for each top-level activity in the operator’s specification.

1819

sharedeofm 1.. associate @ humanoperator DD IDREF

1.. associate @ humanoperator DD IDREF

activity @ name DD ID

0.. associate @ humanoperator DD IDREF

0..1 precondition DD string

0..1 completioncondition DD string

0..1 repeatcondition DD string

decomposition @ operator com

action @ humancomaction DD IDREF

DD string

1.. action @ localvariable DD IDREF

∞

∞

∞

∞

Fig. 3. Changes to the notation of the EOFM notation depicted in Relax NG schema diagram notation. Changes to the humanaction declarations allow for
human action outputs that set specific values. Changes to the definition of actions (at the bottom of the task analytic model hierarchy) accommodate actions that
set values, communicate information, and receive communications. The new com decomposition operator indicates information sharing between human operators.

The initial task tree for an activity is generated by converting
each of its sub-activities to the task tree representation, and
setting each one to Ready. The formal semantics of this task
tree are then given by its evolution over time: in each time-step
zero or more activities may advance, and zero or more actions
may occur. Activities advance in accordance with their state and
constraints, moving from Ready through Executing to Done
as allowed by their conditions. The real work of a task is done
by its actions, the leaves of the task tree, which come in three
basic types: HumanAction corresponding to a humanaction
for an action observable by the system and other humans,
LocVar corresponding to localvariable for remembering values,
and Com for the combined communication action of a com
decomposition in a sharedeofm.

The transformation of environments and task trees is
governed by a set of transition rules for these actions. Each
transition rule assumes a function sys modeling the system
with which the human operators are interacting, and a context
(“task tree with a hole”) t[] giving the task tree surrounding the
action in question. As shown by the first rule, a human action
HumanAction(a, v) causes the operator to perform operation a
with value w (computed from v in lenv, the local environment,
and hd(envs), the current global environment), causing the
environment to change the value of the output variable a in
the environment to w, and causing the action to transition to
the Executing state. This can occur as long as its context t[]
satisfies the start condition at the hole and the action itself is
in the Ready state. In the second rule, a local variable action
LocVar(x, v) causes the operator to associate the value of v
with the variable x in the human’s local environment, modeling
the action of remembering or making a note of a value. The
behavior of the third, combined action Com(n, v, x1, . . . , xm)
causes each of the local variables (belonging to various humans)
to be updated with the value of v (set by the human operator
named n). The fourth rule tells us that any action that is
Executing may immediately transition to Done; an action’s

start(t []) vallenv,hd(envs)(v) = w

sys, t [] ` (envs, lenv , (HumanAction(a, v),Ready))
{(a,w)}−→ (hd(envs) + {a 7→ w}@envs, lenv ,

(HumanAction(a, v),Executing))

start(t []) vallenv,hd(envs)(v) = w

sys, t [] ` (envs, lenv , (LocVar(x , v),Ready))
−→ (envs, lenv + {x 7→ w}, (LocVar(x , v),Executing))

start(t[]) vallenv,hd(envs)(v) = w

sys, t [] ` (envs, lenv , (Com(n, v , x1 , . . . , xm),Ready))
−→ (envs, lenv + {x1, . . . , xm 7→ w}

(Com(n, v , x1 , . . . , xm),Executing))

sys, t [] ` (envs, lenv , (action,Executing))
−→ (envs, lenv , (action,Done))

sys, t [] ` (envs, lenv , (action, state))
−→ (sys(envs)@envs, lenv , (action, state))

Fig. 4. Sample Transition Rules

end condition is always true by definition. The last rule says that
the system may at any time act by updating the environment
(using information from the global environment), but with
no effect on the task trees. Using these rules, and more for
activities and eofms, we can give EOFMC specifications a
transition semantics specifying the steps of execution.

An execution of a specification is defined as a series of
transitions beginning with the specification’s initial task tree
and consistent with the transition rules. We can state and verify
various properties on such an execution, for instance, that action
B is never performed before action A. We say that a property
holds for a specification if it holds for all possible executions
of that specification. Given an EOFMC specification of a task
behavior, we can use this model to prove safety properties of

1820

AUTO
BANK

LIMITSEL

5 25

HOLD

Fig. 5. Mode Control Panel Heading Control and Display

the task behavior. In addition, there is a precise relationship
between our semantics and the translation to SAL given for
earlier versions of EOFM [5]. For specifications not involving
human-to-human communication, the transition semantics can
be shown to give rise to the same sequences of human actions
as the SAL translation. In this sense, the semantics for EOFMC
are an extension of the semantics for EOFM.

III. AN EXAMPLE MODEL

In order to illustrate how our approach can be used to model
human-human and human-automation interaction, we construct
an instantiated EOFMC model for a heading change example
with three human operators, the two pilots (PF and PM) and the
air traffic controller (ATCo) (Fig. 6). This shared activity starts
when, for spacing, the ATCo wants to clear the aircraft to a
new heading. The ATCo’s clearance is a verbal communication
that both pilots hear. The two pilots collaboratively implement
the heading change. The PF monitors the heading change
using a combination of cues; for instance, he checks that the
heading is changing appropriately on the horizontal situation
indicator (HSI) and that the HDG SEL mode is active. The
ATCo monitors that the aircraft has executed the heading change
by noting the change in its track.

With respect to the aircraft, the Autopilot Flight Director
System consists of Flight Control Computers and the Mode
Control Panel (MCP). The MCP provides control of the
Autopilot (A/P), Flight Director, and the Autothrottle System.
When the A/P is engaged, the MCP sends commands to the
aircraft pitch and roll servos to operate the aircraft flight control
surfaces. Herein the MCP is used to activate heading changes.
The Heading (HDG)/Tracking (TRK) window of the MCP
displays the selected heading or track (Fig. 5). The 3 digit
numeric display provides the current desired heading in compass
degrees (between 0 and 359). Below the HDG window is the
heading select knob. Changes in the heading are achieved by
rotating and pulling the knob. Pulling the knob tells the autopilot
to use the pilot selected value and engages the HDG mode.

The ATCo initiates the heading clearance using radio
communications. The ATCo and the PM communicate over
the radio with a pre-specified communication protocol. The
heading is communicated and confirmed in a sequential process.
First, the ATCo presses his push-to-talk switch. Then, the
ATCo communicates the heading (lATCoSelectedClearance)

to the pilots (via the hATCoTalk humancomaction), such as
“AC1 Heading 070 for spacing”. Both pilots remember this
heading (stored in the local variables lPFHeadingFromATC
and lPMHeadingFromATC for the PF and PM respectively).
The ATCo releases the switch. Next, the PM presses his
switch. The PM then repeats/communicates the heading that
he heard (in this example, “AC1 Heading 070”), where both
the ATCo and PF hear and remember the heading. The PM
releases the switch. This entire process must repeat if the
heading the ATCo hears from the PM does not match the
heading he wanted to communicate (lATCoSelectedClearance
6= lATCoHeadingHeardFromPilots). It completes otherwise.

Once the heading has been communicated, the pilots
collaborate (aSetNewHeading). This process involves selecting,
confirming (aChangeAndConfirm) and then executing the new
heading (aExecuteTheChange). The selection and confirmation
process starts with the PF pushing and rotating the heading
select knob to the perceived heading (to 70 degrees in this
example)2. The PF pulls the knob. The PM verifies that the
PF has dialed the correct heading and confirms the heading
selection by pointing to the heading selection in the window
and stating “Heading 070”. Here two communications occur
in parallel (indicated by the and par decomposition operator
associated with aConfirmTheChange): the PM points at the
heading window (aPointAtHeadingWindow) and he speaks the
heading that was entered (aSayTheHeading). Both are perceived
by the PF. This process must repeat if the heading perceived
by the PF does not match the heading spoken by the PM
(lPFHeadingFromPM 6= lPFHeadingFromATCo). Once the
heading is confirmed, the PF then presses the heading select
button to execute the heading change.

IV. CHECKING PROPERTIES

In the example protocol discussed in this paper, there are
certain basic properties we must have. Most importantly, we
want to know that the pilots’ setting the aircraft to a new
heading will only occur as the result of the pilots’ having been
given clearance by the air traffic controller for that heading
and not having been given clearance for any other heading
since then. This says the pilots will not arbitrarily change
the heading of the aircraft, a basic safety property (a safety
property guarantees that some undesirable event will never
happen). Perhaps just as important, however, is the property
that the air traffic controller’s giving clearance to the pilots
to change to a new heading will lead to the pilots’ changing
the aircraft to that new heading. This property is a progress
property (one that guarantees that some desirable event will
eventually happen), rather than a safety property. It is arguable
that the second property is as important as the first, however,
since the air traffic controller needs to know he can rely on his
directives being followed.

To be able to analyze these in the interactive theorem prover
Isabelle, we translated the XML rendition of the EOFMC

2The heading is converted to a numeric heading value using the cSayable-
ToHeading constant mapping. This mapping converts communications encom-
passed by hATCoTalk. cHeadingToSayable converts the pilot communications.

1821

aChange

Heading

ord

aCommunicate

AndConfirm

Heading

lATCoSelectedClearance /= NULL

lATCoSelectedClearance = lATCoHeadingHeardFromPilots

ord

aToggle

ATCoTalk

ord

hARCoPressOr

ReleaseSwitch

ToTalk

aCom

Heading

com

hATCoTalk

lATCoSelected

Clearance

lPFHeading

FromATC

lPMHeading

FromATC

aToggle

ATCoTalk

ord

hARCoPress

OrRelease

SwitchToTalk

aToggle

PMTalk

ord

hPMPressOr

ReleaseSwitch

ToTalk

aComConfirm

Heading

com

hPMTalk

lPMHeading

FromATC

lATCoHeading

HeardFromPilots

lPFHeading

FromPM

aToggle

PMTalk

ord

hPMPressOr

ReleaseSwitch

ToTalk

aSetNew

Heading

ord

aChangeAnd

Confirm

lPFHeadingFromPM = lPFHeadingFromATCo

ord

aMakeThe

Change

ord

hPFPush

HeadingSelect

Knob

 hPFRotateToHeading

cSayableToHeading

(lPFHeadingFromATC)

hPFPull

Heading

SelectKnob

aConfirmThe

Change

and_par

aPointAt

Heading

Window

com

hPMPoint

Heading

Window

lPFThing

PointedAtByPM

aSayThe

Heading

com

hPMTalk

cHeadingToSayable

(iHeadingWindowHeading)

lPFHeading

FromPM

aExecuteThe

Change

ord

hPFEngage

Heading

Selection

lATCoSelectedClearance /= lATCoHeadingHeardFromPilots

lPFHeadingFromPM /= lPFHeadingFromATCo

Fig. 6. Visualization of the instantiated EOFMC shared task for changing the heading on an aircraft. The visualization of EOFMC is nearly identical to that of
EOFM [5]. The task hierarchy is displayed as a tree structure in which each activity is connected to its sub-acts by an arc annotated with its decomposition
operator. Actions are rectangles and activities are rounded rectangles. Connected yellow triangles represent preconditions, magenta triangles indicate completion
conditions, and loops denote repeat conditions. Condition logic annotates the arcs. Where a condition is not shown, it can be assumed to default to true. Activity
names are prefixed with ‘a’, human actions with ‘h’, input variables with ‘i’, local variables with ‘l’, and constants with ‘c’. Activities, actions, and condition
logic are color coded based on the human operator associated with them: red for the ATCo, yellow for the PF, blue for the PM, green for the PF and PM, and
black for all three.

1822

specification shown in Fig. 6 into our internal version in
Isabelle. This translation was done by hand, but it was done
systematically by recursion over the structure.

The properties given above are stated in Isabelle as properties
of lists of task trees and accompanying environment information.
These lists need to conform to execution sequences, and thus
the head element of the list must correspond to the initial task
tree derived from the syntax tree representing the EOFMC
specification, and each adjacent pair should be related by the
transition relation outlined in Section II-B. The method for
showing such safety properties is induction on the length of the
sequence, but requires strengthening the inductive hypothesis
to track each step of information flow through the execution.

Such proofs, however, are a bit unsatisfying. The difficulty
is that the semantics given to the protocol never allows the
possibility of a faulty communication. As a result, there is no
value other than the correct one to which the PF could set
the heading. To address this, we need to add an additional
transition to our system for communication where some of the
local variables receive a different value from that transmitted,
and consider sequences under this extended system. If we
do so, freely allowing for the possibility of any number of
miscommunications, then, in fact, we will find that even the
safety property does not hold. Consider the situation where,
when the ATCo says a heading of 050, both the PM and the
PF hear 090, but when the PM repeats the heading, the ATCo
hears 050 as he expected. In this case, the PF will go ahead
and incorrectly change the heading to 090 with the approval
of the PM.

The above scenario may seem unlikely, as it relies upon
not only two temporally distinct communications going badly,
but also their doing so in a very particular way with perfect
coincidence in the nature of the miscommunication. To address
this criticism, we investigated the weaker property of robustness
against a single error in communication. Such a proof would
use roughly the same proof outline as for safety, but with an
almost overwhelming increase in the case analysis. Still, in the
process of considering a proof of this property, we uncovered
that, in fact, it too does not hold. The single point of failure
occurs if, when the ATCo announces the new heading clearance,
the PM hears the heading change correctly, but the PF does not.
Because the PM has heard the correct result (and all subsequent
communications are assumed not faulty), the protocol will
move past the phase aCommunicateAndConfirmHeading and
on to aSetNewHeading. This is the first point where there
is a missed opportunity to avoid the error: there is no
provision for the PF to take any action in the case that
lPFHeadingFromPM 6= lPFHeadingFromATCo. The next
phase of the protocol, aChangeAndConfirm, is designed to
ensure that the value seen by the PM agrees with what the PF
thought he had heard the ATCo say. Here, a second opportunity
to detect the problem is missed, since the protocol does not
allow the PM in aConfirmTheChange to notice a mismatch
between the value the PF has dialed into the heading window
and the value the PM heard from the ATCo.

The progress property is even more complex to deal with,

in part because it can only possibly hold in the presence of
some form of “fairness” assumption, which would require that
every party has a chance to perform its actions. If the system
is allowed to transition repeatedly without intervening steps
of execution of the task tree, the world could go on forever
without reaching the desired state where the PF engages the
selection (or even sets it). Under a sufficient fairness condition,
it should be possible to show the progress property for this
particular protocol by first showing that every sequence that
ends in a configuration where all the nodes in the task tree are
marked Done had to pass through a transition where engaging
the heading selection was executed, and second, showing that
every sequence can be completed to one in which all the nodes
in the task tree are labeled Done. The latter result would be
shown by induction first on the number of nodes not marked
Done, and second on the number of nodes marked Ready,
and would rely upon the fundamentally sequential nature of
the protocol.

V. CONCLUSIONS AND FUTURE WORK

Thus far, we have extended the syntax of EOFM to allow for
communication and transmission of values, and given semantics
for the extended language EOFMC. An EOFMC specification
can also be translated into XML, which can then serve as a top-
level model for other analysis tools. Using this language, we
modeled the behavior of the human operators in the procedure
to effect a change of heading clearance, and sketched a proof of
a basic safety property. Further proofs along these lines could
help guarantee the safety of the protocol’s task model, or find
errors in the definition of the procedure.

In this paper, we have addressed the issue of modeling
human-human communication, and begun to address the issue of
faulty communication (another area for future work). However,
the techniques described so far do not account for a range of
unanticipated errors, such as hardware failures. Rather than
attempting to provide absolute guarantees against unlikely but
catastrophic errors, e.g. multiple engine failure, we might use
a probabilistic view of the environment to show that we have
a high probability of safety in all situations.

When writing the initial specification for a scenario, the
analyst may not know all the details of the activities involved.
Conversely, when analyzing a specification, we may find it
appropriate to increase or decrease the level of detail according
to the property under consideration. To this end, it is our
goal to extend EOFM with an abstraction mechanism, by
which an action can be expanded into a full activity, or an
activity collapsed into a single action. This must be done in
a manner that preserves the properties under consideration,
and gives rise to various complications regarding concurrency
and simultaneity. Nonetheless, we believe that it would be a
considerable aid in using EOFMC to verify specifications of
complex behavior.

VI. RELATED WORK

A variety of research has investigated how task analytic
behavior models can be used with formal verification to evaluate

1823

system issues related to human-automation interaction (see
[8] for a deeper survey). Some of this work utilized general
formal modeling notations such as state charts [9], Interacting
Communicating Objects (ICOs) [10], and Communicating
Sequential Processes (CSP) [11], in which it is the job of
the analyst to represent task analytic modeling concepts in the
formal notation. While such notations are very expressive, and
the analyses using them can be very powerful, human factors
and human-automation interaction engineers do not generally
use such notations to represent human behavior. Rather, they
use hierarchical task analytic modeling notations similar to
EOFMC such as EOFM [5], ConcurTaskTrees (CTT) [12], and
User Action Notation (UAN) [13]. Thus, in order to allow
native task analytic models to be used in formal verification
analyses, researchers have shown that models instantiated in
these notations can be automatically translated into the more
general formal modeling languages [5], [14], [15], [16].

With the exception of Paternò et al. [15], all of these
techniques have focused on single operator systems. Paternò
and colleagues identified three different ways that collaborative
human behavior could be incorporated into formal task analytic
behavior models (in this case CTT): (1) A single task model
could be created describing the behavior over every operator in
the system; (2) Separate task models could be created for each
operator with additional operators (similar to decomposition
operators in EOFMC) being used to describe the coordinated
and communicative relationships between activities and action
between operator tasks; and (3) A separate task model could
be created for each operator but with the addition of a shared
structure which relates the coordinated and communicative
relationships between the activities and actions contained in the
separate models. The work presented here offers a fourth means
of accomplishing this: allowing separate task to be created for
each operator for activities not requiring coordination, and
allowing for separate shared tasks/activities that require multi-
operator coordination and communication. It is our presumption
that this approach will be more intuitive for human factors
engineers because it does not require them to coordinate the
execution of multiple task structures. Future work should
investigate if this is indeed the case as compared to the other
three approaches discussed by Paternò et al. [15].

REFERENCES

[1] BASI, “Advanced technology aircraft safety survey report,” Department of
Transport and Regional Dedvelopment, Bureau of Air Safety Investigation,
Civic Square, Tech. Rep., 1998.

[2] FAA Human Factors Team, “Federal aviation administration human
factors team report on: The interfaces between flightcrews and modern
flight deck systems,” Federal Aviation Administration, Washington, DC,
Tech. Rep., 1996.

[3] D. Hughes and M. A. Dornheim, “Accidents direct focus on cockpit
automation,” Aviation Week and Space Technology, vol. 142, no. 5, pp.
52–54, 1995.

[4] J. B. Sexton and R. L. Helmreich, “Analyzing cockpit communications:
the links between language, performance, error, and workload,” in Hum
Perf Extrem Environ, vol. 5, no. 1, Oct. 2000, pp. 63–68.

[5] M. L. Bolton, R. I. Siminiceanu, and E. J. Bass, “A systematic approach
to model checking human-automation interaction using task-analytic
models,” IEEE Transactions on Systems, Man, and Cybernetics, Part A,
2011, in Press.

[6] “Relax NG schema diagram,” Syncro Soft. [On-
line]. Available: http://www.oxygenxml.com/doc/ug-oxygen/topics/
relax-ng-schema-diagram.html

[7] “SAL home page.” [Online]. Available: http://sal.csl.sri.com/
[8] M. Bolton, E. J. Bass, and R. Siminiceanu, “Using formal verification

to evaluate human-automation interaction, a survey,” IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans, in
revision.

[9] A. Degani, M. Heymann, and M. Shafto, “Formal aspects of procedures:
The problem of sequential correctness,” in Proceedings of the 43rd Annual
Meeting of the Human Factors and Ergonomics Society. Santa Monica:
HFES, 1999, pp. 1113–1117.

[10] S. Basnyat, P. Palanque, B. Schupp, and P. Wright, “Formal socio-
technical barrier modelling for safety-critical interactive systems design,”
Safety Science, vol. 45, no. 5, pp. 545–565, 2007.

[11] E. L. Gunter, A. Yasmeen, C. A. Gunter, and A. Nguyen, “Specifying
and analyzing workflows for automated identification and data capture,”
in Proceedings of the 42nd Hawaii International Conference on System
Sciences. Los Alatimos: IEEE Computer Society, 2009, pp. 1–11.

[12] F. Paterno, C. Mancini, and S. Meniconi, “Concurtasktrees: A diagram-
matic notation for specifying task models.” Chapman & Hall, 1997, pp.
362–369.

[13] H. R. Hartson, A. C. Siochi, and D. Hix, “The UAN: A user-oriented rep-
resentation for direct manipulation interface designs,” ACM Transactions
on Information Systems, vol. 8, no. 3, pp. 181–203, 1990.

[14] Y. Aı̈t-Ameur and M. Baron, “Formal and experimental validation
approaches in HCI systems design based on a shared event B model,”
International Journal on Software Tools for Technology Transfer, vol. 8,
no. 6, pp. 547–563, 2006.

[15] F. Paternò, C. Santoro, and S. Tahmassebi, “Formal model for cooperative
tasks: Concepts and an application for en-route air traffic control,” in
Proceedings of the 5th International Conference on Design, Specification,
and Verification of Interactive Systems. Vienna: Springer, 1998, pp.
71–86.

[16] R. E. Fields, “Analysis of erroneous actions in the design of critical
systems,” Ph.D. dissertation, University of York, York, 2001.

1824

