
Using Locales to Define a Rely-Guarantee
Temporal Logic

William Mansky, Elsa Gunter

Department of Computer Science, University of Illinois at Urbana-Champaign,
Thomas M. Siebel Center, 201 N. Goodwin, Urbana, IL 61801-2302

{mansky1,egunter}@illinois.edu

Abstract. In this paper, we present an agent-based logic called Rely-
Guarantee Temporal Logic (RGTL), developed using the Isabelle theo-
rem prover. RGTL provides a formalism for expressing complex temporal-
logic specifications of multi-agent systems, as well as a compositional
method of reasoning about the dependencies between components in
such a system. Taking advantage of Isabelle’s locale functionality, we are
able to express various choices about the notion of “strategy” used in the
logic (e.g., memoryless/memory-based) as parameters to the semantics,
whereas previously these choices were considered to define semantics for
distinct variants of agent-based logics. We can then state and formally
verify various aspects of RGTL, including its reasoning principles and its
expressiveness relative to ATL, independently of the type of underlying
strategies, by using locales to axiomatize the necessary requirements on
strategies.

Keywords: logics for agency, temporal logic, reasoning about strategies,
modular specification, Isabelle proof assistant

1 Introduction

Alternating-time temporal logic (ATL) [2] is an extension of temporal logic to
a system with multiple players, agents whose choices influence the evolution of
a system. By introducing quantification over the strategies defining the future
actions of some set of players, ATL provides a mechanism for formulating prop-
erties of the form “A can guarantee ϕ” or “A must allow ϕ”. However, when
dealing with systems containing multiple components working in concert, “can
guarantee” and “must allow” are of less interest than “will guarantee” or “does
not guarantee”. These properties can be expressed, for instance, using the ATL-
STIT language proposed by Broersen et al. [6], where STIT is an acronym for
“sees to it that”. Rely-Guarantee Temporal Logic (RGTL) expands on this ap-
proach, providing a formalism for expressing temporal-logic properties of and
dependencies between components, as well as generalizing the notion of “strat-
egy” from a deterministic function on states and agents to a range of potentially
nondeterministic, progressively refined objects. RGTL is a logic designed to sup-
port the concepts of rely-guarantee reasoning and agency as first-class concepts,

2 William Mansky, Elsa Gunter

providing a flexible logic for specifying and checking requirements on complex
multi-component systems.

The design of the semantics of RGTL was done using the Isabelle proof assis-
tant, and in particular takes advantage of Isabelle’s locale facility, which provides
a mechanism for collecting and manipulating the assumptions required by vari-
ous theories [3]. Through successive layers of locales, we build up the necessary
framework for defining RGTL, including the underlying automata (concurrent
game structures), a fundamental notion of strategies, and various axioms and
operations on strategies. By minimizing the assumptions made in any given
locale, we can give a general statement of the logic, independent of various dis-
tinctions that in past work have been considered to define different logics. For
example, ATL with irrevocable strategies [1] has been defined in two variants,
IATL (in which strategies are memoryless) and MIATL (in which strategies have
unbounded memory). By abstracting away from the details of strategy compu-
tations, we are able to give a single definition of RGTL for both memoryless and
memory-based strategies (as well as various other potential distinctions), which
can be specialized to either case by plugging in the corresponding sublocale.
Using the same approach in our analysis of expressiveness, we are able to prove
that RGTL is more expressive than ATL∗ regardless of the type of strategies
used, as long as the type of strategies is consistent across the two logics.

2 Example: A First Look

To understand the extra flexibility afforded to us by RGTL over ATL, let us
consider a simple example with two agents, A and B, and a system. The system
offers to each agent a toggle, which, at each instant, the agent associated with
the toggle may either push or leave alone. The toggles jointly control whether a
light is on or off. If, in a given instant, just one agent pushes their toggle, the
light will change state: if it was on it will go off, and if it was off it will go on.
If both agents either leave their toggles alone, or simultaneously push them, the
light will not change state: if it was on, it will stay on, and if it was off, it will
stay off.

Now let us consider the property P that at some point the light will be on and
remain on from that point forward. In Linear Temporal Logic (LTL) [13], this
can be stated as ♦ � light on, i.e., “eventually always the light is on”. Obviously,
if the two agents are free at each instant to choose whether to push the toggle
or not, the system will display some traces that satisfy this property, but also
many that do not. If we want to know whether the two players can collaborate to
assure P , then we are effectively asking if there exists a trace satisfying P , which
is a property that can be expressed in Branching Time Temporal Logic (CTL*)
[4]. However, if we wish to focus on what one agent can control without joint
collaboration with the other, we are unable to prove any meaningful results. In
particular, speaking in ATL terms, it should be clear that a single agent cannot
guarantee P , and indeed must allow ¬P (i.e., JAK�♦¬light on). No matter what
strategy agent A pursues, there is a way for agent B to mess things up. However,

Using Locales to Define a Rely-Guarantee Temporal Logic 3

were agent A able to make use of certain properties of the behavior of agent B,
then it might be possible for A to craft a strategy to always guarantee P , even if
A did not know exactly what B would do at any given instant. For example, if B
could definitely be relied upon to eventually stop toggling, then the strategy for
A to always push the toggle on when the light is off will guarantee that eventually
the light will be on and stay on. It is this kind of conditional component-wise
reasoning that we aim to express and support in RGTL.

3 RGTL Syntax

Intuitively, the ATL path quantifier 〈〈A〉〉 allows us to express “can guarantee”
properties; 〈〈A〉〉ϕ holds of a system when there is some strategy for A that
ensures ϕ (despite the actions of the remaining agents). The dual operator,
JAKϕ ≡ ¬〈〈A〉〉¬ϕ, holds when for any strategy for A, the remaining agents can
ensure ϕ; intuitively, this is a “must allow” property. In the case in which we
have an existing strategy on which we want to check properties, neither of these
operators provide the correct formalism.

Instead, we would like to say that a program does satisfy a property, and more
generally that agent a satisfies some property Pa as long as agent b satisfies its
own property Pb. Pb may be thought of as the protection envelope for agent b.
The concept of the protection envelope appears in the work of Gunter et al. [9].
While it may be possible to show that a particular workflow for b satisfies a
desired property, minor variations in b’s workflow may violate the property. The
protection envelope is a more general property that may be satisfied by variations
on b’s expected workflow, while providing enough information to ensure safety of

the overall system. The
A
V operator is designed to facilitate this style of system

specification: the left-hand side of the implication is the protection envelope for
A, and the right-hand side is the property enabled by this envelope. Because of
its similarity to the rely-guarantee approach originally proposed by Jones [10],
we refer to this operator as the “rely-guarantee arrow”.

Following CTL* and ATL∗, an RGTL formula is either a state formula or
a path formula; the semantics of a state formula depends only on information
about the current state, while the semantics of a path formula includes assertions
on possible future states.

ϕ ::= ϕ ∧ ϕ | ¬ϕ | dϕ | ϕ U ϕ | ψ
ψ ::= π | ψ ∧ ψ | ¬ψ | ψ

A
V ψ | Λϕ

where π ∈ Π is an atomic proposition and A ⊆ A is a set of agents. Aside

from the usual temporal connectives, RGTL includes the
A
V operator and the

Λ operator, which quantifies over the outcomes of a strategy. The semantics of
these operators is given in the following section.

4 William Mansky, Elsa Gunter

4 Semantics

4.1 Concurrent Game Structures and Strategies

The semantics of RGTL in Isabelle is built up through a series of nested locales.
Each locale introduces a set of objects and axioms defining one of the concepts
needed to give semantics to RGTL formulae, and provides useful constructs and
lemmas for working with that concept. Ideally, each locale introduces exactly
the assumptions needed for the definitions and proofs it provides. Through this
approach, our semantics remains agnostic of the underlying implementation of
various features of the semantics, in particular that of the type of strategies
introduced below.

The first locale, CGS, introduces the concept of a concurrent game structure,
a type of automata that moves from state to state according to the actions of
a set of agents. The semantics of ATL and related logics, including RGTL, are
evaluated with concurrent game structures as their underlying automata.

Locale Definition 1 A CGS is a tuple (A, Q,Π, π,Σ, e, δ), where A is a finite
and non-empty set of agents (also called players), Q is a finite set of states, Π
is a finite set of atomic propositions, π is a labeling function from each state
q ∈ Q to the set of atomic propositions that hold in q, Σ is a finite set of
actions available to the agents, e : A × Q → 2Σ is a function that gives the
(non-empty) set of enabled actions for each combination of agent and state, and
δ : Q × ΣA → Q defines the transitions between states based on the actions of
each agent.

As in other agent-based logics, satisfaction of an RGTL formula is defined in
terms of strategies for sets of agents and the outcomes of those strategies. Var-
ious definitions of strategies have been presented for ATL; for instance, strate-
gies may have no memory, bounded memory, or unbounded memory [5], and
may be deterministic or nondeterministic [15]. In the strategy locale for RGTL,
CGS strategies, we give an extremely general definition of strategies, and re-
quire only the operations needed to define the semantics of strategy-based logics.

Locale Definition 2 Let (A, Q,Π, π,Σ, e, δ) be a CGS. Let R be the type of
state information, supporting the operations current state(ρ), init(q) (creation of
initial state information), and ρ·q (update with a new state). A strategy is an ob-
ject supporting the function J K : A×R→ 2Σ such that for all agents a and state
information ρ, JSK(a, ρ) is non-empty and consistent with e(a,current state(ρ)).

Intuitively, JSK(a, ρ) is the set of actions allowed by S for agent a, given knowl-
edge ρ of past states. In a concrete instance, ρ may be a state, finite history,
or infinite history; for example, we can obtain memoryless strategies by taking
R = Q and letting current state(q) = q, init(q) = q, and q · q′ = q′.

Given these axioms, we can define the following constructs on strategies.

Definition 1. A strategy S is deterministic if for each agent a, either |JSK(a, ρ)| =
1 for all ρ or else JSK(a, ρ) = e(a, current state(ρ)) for all ρ.

Using Locales to Define a Rely-Guarantee Temporal Logic 5

A deterministic strategy is one that either completely determines the actions of
an agent, or else places no restrictions on it. This is the type of strategies used
in the original definition of ATL [2]; in general, RGTL strategies may offer any
number of choices for each agent.

Definition 2. The outcomes out of a strategy S and state information ρ are
defined as out(S, ρ) = {λ. λ0 = current state(ρ) ∧ ∀i. ∃σ. σa ∈ JSK(a, ρ · λ[1,i]) ∧
λi+1 = δ(λi, σ)}, where we write λi for the ith element of the sequence λ, λ[i,j]
for the subsequence of λ starting at the ith element and ending at the jth element
(or the empty sequence when j < i), and ρ ·λ for ρ updated with the elements of
λ.

An infinite path λ through the underlying CGS is an outcome of a strategy S
given state information ρ if λ starts in the current state current state(ρ) and
there is a way to proceed from each state in λ to the next that is allowed by
S. Note that in the case where S is deterministic and ρ is a single state q, this
corresponds exactly to the original ATL definition of outcomes.

Definition 3. We say that a strategy T is a refinement of a strategy S, written
T v S, when JT K(a, ρ) ⊆ JSK(a, ρ) for each agent a and state information ρ.

We also refer to a strategy T such that T v S as a sub-strategy of S. As one might
expect, reducing the nondeterminism of a strategy reduces the set of outcomes;
this result follows directly from the relevant definitions.

Lemma 1. If T v S, then out(T, ρ) ⊆ out(S, ρ) for any ρ.

We also assume several methods of deriving strategies from existing strate-
gies, forming the basis of our implementation-agnostic algebra of strategies. The
first such axiom allows us to derive strategies that ignore or presume particu-
lar state information. This will be of particular use in showing the relationship
between RGTL and ATL (Section 6.3).

Locale Definition 3 For any strategy S and state information ρ, there is a
strategy T such that out(S, ρ) = out(T, init(current state(ρ))), and a strategy R
such that out(S, init(current state(ρ))) = out(R, ρ).

Second, we assume that given a potentially nondeterministic strategy with a
range of possible outcomes, we can pick out a sub-strategy that produces any
particular outcome.

Locale Definition 4 For any outcome λ ∈ out(S, ρ), there is a strategy T such
that T v S and out(T, ρ) = {λ}.

4.2 Strategies in RGTL

While these definitions are sufficient to allow us to talk about strategies and
satisfaction for ATL and its variants, RGTL requires several additional strategy
operators. We axiomatize these operators in the RGTL semantics locale.

6 William Mansky, Elsa Gunter

Locale Definition 5 > is a strategy such that for any agent a and state infor-
mation ρ, J>K(a, ρ) = e(a, current state(ρ)). Given a strategy S for the system
and a set of agents A ⊆ A, we define the restriction of S to A by

JS|AK(a, ρ) =

{
JSK(a, ρ) a ∈ A
e(a, current state(ρ)) a /∈ A

We can use restriction to talk about strategies for individual agents or groups
of agents, which place no restrictions on the behavior of the rest of the system.
Note that > has the same semantics as S|∅ for any S.

In order to determine satisfaction of the rely-guarantee operator, we also
need a mechanism for combining multiple strategies.

Locale Definition 6 We say that two strategies S and T are consistent if for
all input we have JSK(a, ρ) ∩ JT K(a, ρ) 6= ∅. We define the join of two consistent
strategies, written S u T , by JS u T K(a, ρ) = JSK(a, ρ) ∩ JT K(a, ρ).

In other words, SuT allows only actions that are allowed by both S and T . When
S and T are inconsistent, the output of S u T is ill-defined, since all strategies
must allow at least one action for any input. We take care to ensure that this
case does not arise in the evaluation of the satisfaction of RGTL formulae. We
also assume that the u operator is associative, commutative, idempotent, and
has > as an identity; in other words, u induces a semilattice on strategies, with
> as the top element.

The u operator can be shown to have the following properties with respect
to refinement:

Lemma 2. If T v S, then T u S′ v S u S′ for any S′ consistent with T .

Lemma 3. (S u T)|A v S|A and (S u T)|A v T |A.

These properties are useful in establishing a framework for component-wise rea-
soning in RGTL (see Section 6).

4.3 RGTL Semantics

The satisfaction of a RGTL state formula is defined with respect to a CGS C, a
strategy S, and state information ρ, as follows:

– C, S, ρ |= p iff p ∈ π(current state(ρ)) where p ∈ Π is an atomic proposition
– C, S, ρ |= ψ1 ∧ ψ2 iff C, S, ρ |= ψ1 and C, S, ρ |= ψ2

– C, S, ρ |= ¬ψ iff C, S, ρ 6|= ψ

– C, S, ρ |= ψ1

A
V ψ2 iff ∀T. T |A v S|A ∧ (∀R. C, T |A u R|A, ρ |= ψ1) ⇒

C, S u T |A, ρ |= ψ2

– C, S, ρ |= Λϕ iff ∀λ ∈ out(C, S, ρ). C, S, ρ, λ |= ϕ

The satisfaction of a path formula also depends on a future path λ, generated
from the strategy S through evaluation of the Λ operator.

Using Locales to Define a Rely-Guarantee Temporal Logic 7

– C, S, ρ, λ |= ϕ1 ∧ ϕ2 iff C, S, ρ, λ |= ϕ1 and C, S, ρ, λ |= ϕ2

– C, S, ρ, λ |= ¬ϕ iff C, S, ρ, λ 6|= ϕ
– C, S, ρ, λ |= dϕ iff C, S, ρ · λ1, λ[1,∞) |= ϕ
– C, S, ρ, λ |= ϕ1 U ϕ2 iff ∃i. C, S, ρ · λ[1,i], λ[i,∞) |= ϕ2 ∧
∀j < i. C, S, ρ · λ[1,j], λ[j,∞) |= ϕ1

– C, S, ρ, λ |= ψ iff C, S, ρ |= ψ

5 Example: Verifying Rely-Guarantee Properties

Let us recall our simple light system of Section 2. We begin by describing the
concurrent game structure C that we will use to model this system. Firstly, our
agents are the two in charge of their separate toggles: {A,B}. We will model the
state of our system with a collection of boolean variables. To represent the state
of the light, we will use the variable light on for whether the light is on in the
current state. We will also have one variable per toggle, recording whether, in
the most recent event, it was pushed or not. Our example is adequately simple
that this is adequate information to keep about our states. Thus our system
has a total of eight states. Let us use records {light on, pushedA, pushedB}. Our
variables will also act as our atomic propositions: they are true of a state if
they are true in the state. Our actions for each agent are simply to push their
toggle, or to do nothing (a τ action). In every state, both pushing the toggle,
and doing nothing is enabled for each agent. Finally, our transition function can
be described as:

δ(q, (σA, σB)) =

 light on = (σA = σB)
pushedA = (σA = push)
pushedB = (σB = push)

For this example, we will take our state information to be histories, that is,

finite sequences of states already seen. We can take the set of strategies for A
and B to be all pairs of functions mapping sequences of states to non-empty
subsets of {τ, push}. The strategy > is the pair of functions that assigns to each
agent the full set {τ, push} in each state. The join of two strategies is just the
component-wise intersection of the original outputs of the two strategies. We
will show in Section 6.4 that the axioms of the RGTL semantics are satisfied by
this model.

Finally, recall the system property we wish to assure, that eventually the light
will always be on. As in LTL, this property may be expressed as Λ♦�light on
(using the standard interpretation of ♦ and � have ther usual meaning in terms
of U . As we stated earlier, this is not a property that one agent alone can
guarantee. However, if we assume that agent B will guarantee that eventually
they will stop pushing their toggle (Λ♦�¬pushed B), then there is a strategy for
A to pursue, namely:

S(a, {light on, pushedA, pushedB} =

{τ} if a = A ∧ light on
{push} if a = A ∧ ¬light on
{τ, push} if a = B

8 William Mansky, Elsa Gunter

Using these pieces, what we may prove for all states q, we have C, S, q |=

(Λ♦�¬pushed B)
B
V (Λ♦�light on).

6 Logical Properties of RGTL

Here we present various theorems that facilitate reasoning about specifications
in RGTL. Except where stated otherwise, all theorems are proved in the context
of the RGTL semantics locale, and so can be generalized to any interpretation
of concurrent game structures, strategies, and strategy operators.

6.1 Properties of the V Operator

First, we examine the behavior of the rely-guarantee operator
A
V at the extremes,

that is, when A is either the full set of agents A or the empty set.

Lemma 4. C, S, ρ |= ψ1

A
V ψ2 iff C, T, ρ |= ψ1 implies C, T, ρ |= ψ2 for all

T v S.

In other words,
A
V is a stronger form of implication that holds not only for the

current strategy S but for all sub-strategies of S as well.

Lemma 5. C, S, ρ |= ψ1

∅
V ψ2 iff C, S, ρ |= ψ2 only if C, T, ρ |= ψ1 for all T .

This lemma shows that ψ1

∅
V ψ2 states the rather unintuitive property that ψ2

holds under the current strategy only if ψ1 is true under any strategy, i.e., ψ1

is a constant that holds regardless of strategy. While at first this property may
seem too restrictive to be of use, we can in fact use it to construct several defined
operators that provide general quantification over strategies.

Definition 4. Let exS ψ ≡ (¬ψ)
∅
V false and allS ψ ≡ ¬exS ¬ψ.

Lemma 6. C, S, ρ |= exS ψ iff ∃S′. C, S′, ρ |= ψ.

Lemma 7. C, S, ρ |= allS ψ iff ∀S′. C, S′, ρ |= ψ.

These operations help us bridge the gap between RGTL, in which established
strategies are carried throughout a formula, and ATL, in which strategies are
reselected at each strategy quantifier.

6.2 Reasoning in RGTL

The core of component-wise reasoning in RGTL is the following theorem, adapted
from the rule given by Xu et al. for parallel composition in concurrent programs
[14].

Using Locales to Define a Rely-Guarantee Temporal Logic 9

Theorem 1. Suppose we have a CGS C, a strategy S, and disjoint sets of agents

A and B such that C, S|A, ρ |= relyA
A
V guarA and C, S|B , ρ |= relyB

B
V guarB.

Furthermore, suppose that for all T , C, T, ρ |= (relyA ∧ guarA) ⇒ relyB and

C, T, ρ |= (relyB∧guarB)⇒ relyA. Then C, S|A∪B , ρ |= relyA
A∪B
V guarA ∧ guarB.

Proof. We show that S|A∪B , ρ |= relyA
A∪B
V guarA ∧ guarB by fixing a strategy

T |A∪B for agents not in A ∪ B, assuming that T |A∪B guarantees relyA for any
behavior of A and B, and showing that therefore U = S|A∪B u T |A∪B satisfies
guarA∧guarB . In particular, we may assume that T |A∪BuS|B guarantees relyA.

Then since C, S|A, ρ |= relyA
A
V guarA, we know that S|A u T |A∪B u S|B = U

guarantees guarA.
Similarly, we may assume that T |A∪B guarantees relyA, and thus show that

S|A u T |A∪B guarantees guarA. Using our assumption once more, we have that
S|A u T |A∪B also satisfies relyA, and so satisfies relyB . Then, since C, S|B , ρ |=

relyB
B
V guarB , we can conclude that S|B uS|A u T |A∪B = U satisfies guarB as

well, and the proof is complete. ut

This theorem connects RGTL to the method of rely-guarantee reasoning for
which it is named [10]. The pre- and post-conditions used by Xu et al. are absent,
since RGTL deals with properties on infinite executions rather than terminating
processes, but otherwise the rely-guarantee method of reasoning fits neatly with

the
A
V operator, justifying our intuitive understanding of it as the “rely-guarantee

arrow”. While the language of Xu et al. uses an interleaved model of concurrency,
the CGS model provides true synchronization, so the disjunctive requirements
on the rely- and guarantee-formulae can be replaced with stronger conjunctive
conditions. Using this rule, if we prove that each component of a system satisfies
its specification (its guarantee) given the protection envelope of the rest of the
system, we can then conclude that the combined system satisfies the combination
of each component specification.

6.3 Expressiveness

With the help of the exS operator defined in Section 6.1, we can construct an
embedding of ATL∗ in RGTL. In particular, we can define a syntactic transfor-
mation h from a formula in ATL∗ to an RGTL formula as follows:

– hstate(p) = p where p ∈ Π is an atomic proposition
– hstate(¬ψ)state = ¬hstate(ψ), and hstate(ψ1 ∧ ψ2) = hstate(ψ1) ∧ hstate(ψ2)

– hstate(〈〈A〉〉ϕ) = exS ¬(Λ(hpath(ϕ))
A
V false)

– hstate(¬ϕ)path = ¬hpath(ϕ), and hpath(ϕ1 ∧ ϕ2) = hpath(ϕ1) ∧ hpath(ϕ2)
– hpath(ψ) = hstate(ψ) where ψ is a state formula
– hpath(dϕ) = dhpath(ϕ)
– hpath(ϕ1 U ϕ2) = hpath(ϕ1) U hpath(ϕ2)

10 William Mansky, Elsa Gunter

In order to show that this translation preserves the semantics of ATL∗, we
first must address two major disparities between RGTL and ATL. The first is
revocability of strategies: while in ATL all strategies are cleared from the con-
text at each quantification operator, RGTL may in general retain its strategies
indefinitely once chosen. The use of the exS operator allows us to simulate the
revocable behavior of ATL:

Lemma 8. For any strategy S, C, S, ρ |= hstate(ψ) iff C,>, ρ |= hstate(ψ), and
C, S, ρ, λ |= hpath(ϕ) iff C,>, ρ, λ |= hpath(ϕ).

The second point of disparity is in the treatment of state information. In ATL,
the information available to a strategy begins at the point the strategy is chosen;
while it may build up knowledge of the past over its lifetime, it has no access to
the states visited before reaching the strategy quantifier where it was invoked.
In RGTL, by contrast, a strategy may have available the entire history built up
over the course of evaluation of a formula. This gap is bridged by use of Locale
Definition 3 from Section 4; given that there exists a strategy that produces
certain outcomes given some state information, we can provide one that produces
the same outcomes given only the current state, and vice versa. (Note that, since
the type of state information is a parameter to the CGS strategies locale, the
state information used may not necessarily be a history; in the case where the
type of state information is instantiated to be simply the current state, the
following lemma is trivial.)

Lemma 9. For any strategy S, C, S, ρ |= hstate(ψ) iff the single-state state in-
formation C, S, init(current state(ρ)) |= hstate(ψ), and C, S, ρ, λ |= hpath(ϕ) iff
C, S, init(current state(ρ)), λ |= hpath(ϕ).

With these two differences reconciled, we can then prove the following theorem.

Theorem 2. For any ATL∗ state formula ψ, path formula ϕ, and state infor-
mation ρ, C, ρ |=ATL ψ if and only if C,>, ρ |=RGTL hstate(ψ), and C, λ |=ATL ϕ
if and only if C,>, init(λ0), λ |=RGTL hpath(ϕ).

Proof. By simultaneous induction on the structure of ψ and ϕ.
While most cases of the translation are straightforward, the translation of the

strategy quantifier 〈〈A〉〉 is of particular interest. To understand the correctness
of the embedding, we must unfold the semantics of our translation for 〈〈A〉〉ψ. By

Lemma 6, exS ¬(Λ(ϕ)
A
V false) is true given state information ρ iff ∃S. C, S, ρ |=

¬(Λ(ϕ)
A
Vfalse). In general, for any formula ψ, we have that C, S, ρ |= ¬(ψ

A
Vfalse)

iff ∃T. T |A v S|A∧(∀R. T |AuR|A, ρ |= ψ). Choosing S to be equal to T , we then

have that C, S0, ρ |= exS ¬(Λ(ϕ)
A
V false) iff ∃T. ∀R. C, T |AuR|A, ρ |= Λ(ϕ), that

is, there is some strategy T for A such that for all strategies R for the remaining
agents, in all outcomes, ϕ holds. This is precisely the definition of the strategy
quantification operator 〈〈A〉〉. ut

Thus, h is a semantics-preserving embedding of ATL∗ in RGTL, and we can
conclude that RGTL is at least as expressive as ATL∗. This proof is completed

Using Locales to Define a Rely-Guarantee Temporal Logic 11

in the RGTL semantics locale, and so is independent of implementation details,
and in particular of the type of strategies used. In other words, we have shown
that RGTL is at least as expressive as ATL∗ for all variants of strategies –
whether memory-based, memoryless, deterministic, or nondeterministic – as long
as RGTL and ATL∗ use the same type of strategies.

As Alur et al. have shown that model-checking for ATL∗ is 2EXPTIME-
complete (for memory-based deterministic strategies), model-checking for RGTL
with these strategies is at least 2EXPTIME-complete. Model-checking for memo-
ryless strategies may be more tractable, since the space of memoryless strategies
is sharply constrained by the size of the CGS; on the other hand, model-checking
for fully nondeterministic strategies is likely to be more complex.

6.4 Concrete Interpretation

Thus far, all our reasoning has taken place inside the RGTL semantics locale,
under the assumption of a type of strategies supporting the various operations
used in the semantics of RGTL. In order to show that these properties hold
for any actual logical system, we must show that there exists an interpretation
of the locale, i.e., a concrete instantiation of the various required types and
sets that satisfies the locale’s axioms. In this section, we present a model of
nondeterministic strategies with unbounded memory, and use it to construct an
interpretation of the RGTL semantics locale.

Definition 5. A nondeterministic strategy with unbounded memory on a CGS
(A, Q,Π, π,Σ, e, δ) is a function S : A × Q+ → 2Σ such that for any agent a
and history ρ, S(a, ρ) ⊆ e(a, last(ρ)) and S(a, ρ) is non-empty.

Using this definition, we can construct an interpretation of RGTL semantics

in two steps. More precisely, we will construct a proof that the CGS locale, ex-
tended with this notion of strategies, is a sublocale of RGTL semantics; that
is, we will provide concrete interpretations for strategies and strategy opera-
tors, but continue to axiomatize the definition of a concurrent game structure.
Since RGTL semantics is built on top of the CGS strategies locale, we begin
by showing that CGS extended with this notion of strategies is a sublocale of
CGS strategies.

Lemma 10. A CGS along with its nondeterministic strategies with unbounded
memory is an instance of CGS strategies.

Proof. To prove this, we must show that the type of state information supports
the operations current state(ρ), init(ρ), and ρ · q, and that the type of strategies
supports the operation JSK. Our type of state information is Q+, the set of finite
non-empty sequences of states in Q, and so we can define current state(ρ) =
last(ρ), init(q) = q, and ρ · q = ρ · q in the sense of concatenation of sequences.
Similarly, our strategies are already functions from A×Q+ to 2Σ that are non-
empty and consistent with e, so we may define J K to be simply the identity
function.

12 William Mansky, Elsa Gunter

In addition, we must show that the two strategy-creation axioms are satis-
fied by our interpretation. Given a strategy S with certain behavior on a se-
quence ρ, the strategy λa ρ′. S(a, ρ[0,|ρ|−1) · ρ′) produces the same behavior on
current state(ρ); similarly, for a given ρ, if S has some behavior on current state(ρ),
the strategy λa ρ′. S(a, ρ′[|ρ|−1,|ρ′|)) has the same behavior on ρ. Finally, we must

show that for any outcome λ ∈ out(S, ρ), there exists a sub-strategy T v S such
that out(T, ρ) = {λ}. This is the most complex part of the proof of interpreta-
tion; putting aside the technical details, the intuition is to provide the strategy
that, for each history of the form ρ · λ[1,i], produces a vector of actions σ such
that δ(λi, σ) = λi+1. We know that such a vector exists at each point i because
S has produced λ as an outcome through precisely such a vector, and so can
create a strategy that at each step mirrors the behavior of S in producing λ. ut

Since our strategy interpretation function is the identity function, it follows
naturally that the strategy operators are given by their axiomatized semantics.

Definition 6. Let > = λa ρ. e(a, current state(ρ)), S|A = λa ρ. if a ∈ A then
S(a, ρ) else e(a, current state(ρ)), and S u T = λa ρ. S(a, ρ) ∩ T (a, ρ).

Lemma 11. Under these definitions, a CGS with nondeterministic strategies
with unbounded memory is an instance of RGTL semantics.

Proof. We must simply show that each strategy operator satisfies its axioms,
which follows directly from the definitions of the operators. ut

7 Conclusion

In this paper, we have presented the rely-guarantee-based temporal logic RGTL,
and demonstrated its use as a compositional method for verifying properties of
multi-agent concurrent systems. We have shown a semantics-preserving embed-
ding of ATL∗ into RGTL parameterized by the type of strategies used by the
agents, so that we can be assured of the relative expressiveness of RGTL as long
as certain assumptions hold on the type of strategies. We also have presented
an instantiation of the generic type of strategies, and demonstrated that one
common notion of strategy satisfies the necessary assumptions.

While we believe RGTL has appeal as a logic in its own right, it has also
benefited considerably from the use of Isabelle in its development. By building
RGTL on top of Isabelle’s locale system, we are able to define several variants of
the logic – deterministic, nondeterministic, memoryless, memory-based – with a
single semantic function. The use of locales on the one hand allows us to state
our theorems and write our proofs in their full generality, and on the other hand
forces us to explicitly state our assumptions and demonstrate that they are sat-
isfied by the intended models. The building blocks of our proofs, including the
locales CGS and CGS strategies, may be reused in the Isabelle development of
other strategy-based logics, allowing for strategy-agnostic expressiveness results
such as ours with respect to ATL∗. The strategy operators defined in our locales

Using Locales to Define a Rely-Guarantee Temporal Logic 13

may also have uses beyond the semantics of RGTL; for instance, our join opera-
tion u on strategies is related to the † operation used in IATL to update a CGS
with a strategy [1]. Recent research in agent-based formalisms has given rise to
a plethora of ATL-related logics (see for instance Brihaye et al.’s taxonomy of
ATL variants [5]); we believe that movement towards a general, strategy-agnostic
framework for defining the semantics of these logics will considerably simplify
the process of formally stating, verifying, and comparing them.

The Isabelle development described in this paper can be found online at
https://netfiles.uiuc.edu/mansky1/www.

8 Future Work

While RGTL represents a step forward in expressing properties of multi-agent
systems, there are still various features of real-world programs that are not re-
flected in the logic. For instance, using the ordinary temporal logic connectives
of LTL/CTL/ATL, it is difficult to compare values across states in a path; a
property such as “the value of x always increases” is non-intuitive to state and
prove. The Temporal Logic of Actions (TLA) [11] is a variant of LTL that ad-
dresses this problem by expanding the atomic propositions to relations over pairs
of states (“actions”). Work is in progress to extend RGTL to the setting of ac-
tions, allowing a more concise intuitive description of software- and workflow-like
properties.

One clear area for further work is the problem of incomplete information;
in practice, not every player in a game may have full access to the current
state. There has been extensive work on this problem as it relates to ATL and
similar logics; see for instance the work of Dima et al. [8] Through approaches
such as imposing equivalence classes on histories, thus limiting each player’s
knowledge of the environment, we can more accurately model partial-knowledge
scenarios, for instance parallel programs in which each thread can only access
certain variables.

Strategy Logic [7] is a logic related to ATL, with facilities for more general
quantification over strategies. We are currently exploring an extension of strategy
logic with strategy satisfaction and refinement, which we believe to be strictly
more expressive than RGTL. Since strategy logic is known to be decidable, this
may provide a method of proving the decidability of model-checking for RGTL.

While the complexity of model-checking full RGTL is as yet undetermined,
in practice, the full expressiveness of RGTL may not be required. For instance,

note that in the case study, arbitrary nesting of the
A
V operator is not required

to express the protection-envelope properties. If we restrict our language to a
Horn-clause-like fragment of RGTL, in which the rely-guarantee operator is used
in a strictly “positive” manner, the model-checking problem may become more
tractable.

14 William Mansky, Elsa Gunter

9 Related Work

Our notion of strategy satisfaction is similar to and borrows concepts from the
STIT-extension of ATL proposed by Broersen et al. [6]; however, the STIT ex-
tension is restricted to the case of deterministic strategies, and does not address
the subtleties of strategy combination and refinement. We also build on the work
of Yasmeen on varieties of ATL and logics with strategies [15].

Mogavero et al. [12] define a semantics for ATL∗ that, like RGTL, retains
knowledge of the execution complete history ρ rather than only the current
state and future execution. In Mogavero’s “relentful” approach, the temporal
operators are evaluated on the combination of history and future execution, so
that for instance �ϕ is satisfied if ϕ held sometime in the past. In our semantics,
players may take history into account when making their strategic decisions, but
each temporal formula is still evaluated beginning at the moment its strategy
comes into effect, with the history serving only to increase the range of possible
strategies.

GL (game logic) is a generalization of ATL/ATL∗ proposed by Alur et al.
[2], which allows arbitrary quantification over sets of strategies. In combination
with strategy satisfaction and refinement, this provides a mechanism similar to
(but not equivalent to) the rely-guarantee operator of RGTL. Strategy logic,
mentioned above, can also be seen as an extension of GL with more flexible
strategy quantification.

ATL with Strategy Contexts and Bounded Memory [5] is another step to-
wards greater control over the strategy quantification of ATL, providing several
quantification operators that allow switching between revocable (ATL-style) and
irrevocable (IATL-style) use of strategies. We have not yet determined the ex-
pressiveness of RGTL with respect to ATL∗sc, which would be an interesting area
for future work.

10 Acknowledgements

This material is based upon work supported in part by NASA Contract
NNA10DE79C and NSF Grant 0917218. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of NASA or NSF.

References

1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal logics with
irrevocable strategies. In: Proceedings of the 11th conference on Theoretical aspects
of rationality and knowledge. pp. 15–24. TARK ’07, ACM, New York, NY, USA
(2007), http://doi.acm.org/10.1145/1324249.1324256

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

Using Locales to Define a Rely-Guarantee Temporal Logic 15

3. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) Types for Proofs and Programs, Lecture Notes in Computer
Science, vol. 3085, pp. 34–50. Springer Berlin / Heidelberg (2004), http://dx.doi.
org/10.1007/978-3-540-24849-1_3, 10.1007/978-3-540-24849-1 3

4. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. In:
POPL ’81: Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of Programming Languages. pp. 164–176. ACM, New York, NY, USA (1981)

5. Brihaye, T., Costa, A., Laroussinie, F., Markey, N.: ATL with strategy contexts
and bounded memory. In: Proceedings of the 2009 International Symposium on
Logical Foundations of Computer Science. pp. 92–106. LFCS ’09, Springer-Verlag,
Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-540-92687-0_7

6. Broersen, J., Herzig, A., Troquard, N.: A STIT-extension of ATL. In: In Tenth
European Conference on Logics in Artificial Intelligence (JELIA’06. pp. 69–81.
Springer (2006)

7. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208,
677–693 (June 2010), http://dx.doi.org/10.1016/j.ic.2009.07.004

8. Dima, C., Enea, C., Guelev, D.P.: Model-checking an alternating-time temporal
logic with knowledge, imperfect information, perfect recall and communicating
coalitions. In: GANDALF. pp. 103–117 (2010)

9. Gunter, E.L., Yasmeen, A., Gunter, C.A., Nguyen, A.: Specifying and analyzing
workflows for automated identification and data capture. In: HICSS. pp. 1–11
(2009)

10. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5, 596–619 (October 1983), http:

//doi.acm.org/10.1145/69575.69577

11. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16,
872–923 (May 1994), http://doi.acm.org/10.1145/177492.177726

12. Mogavero, F., Murano, A., Vardi, M.Y.: Relentful strategic reasoning in
alternating-time temporal logic. In: Proceedings of the 16th international con-
ference on Logic for programming, artificial intelligence, and reasoning. pp. 371–
386. LPAR’10, Springer-Verlag, Berlin, Heidelberg (2010), http://dl.acm.org/

citation.cfm?id=1939141.1939162

13. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science. pp. 46–57. SFCS ’77, IEEE Com-
puter Society, Washington, DC, USA (1977), http://dx.doi.org/10.1109/SFCS.
1977.32

14. Xu, Q., de Roever, W.P., He, J.: The rely-guarantee method for verifying shared
variable concurrent programs. Formal Aspects of Computing 9, 149–174 (March
1997)

15. Yasmeen, A.: Formalizing operator task analysis. Ph.D. thesis, University of Illinois
at Urbana-Champaign, USA (2011)

