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Abstract
While program correctness for compiled languages depends fundamentally on compiler correct-
ness, compiler optimizations are not usually formally verified due to the effort involved, partic-
ularly in the presence of concurrency. In this paper, we present a framework for stating and
reasoning about compiler optimizations and transformations on programs in the presence of re-
laxed memory models. The core of the framework is the PTRANS specification language, in
which program transformations are expressed as rewrites on control flow graphs with temporal
logic side conditions. We demonstrate our technique by verifying the correctness of a redund-
ant store elimination optimization in a simple LLVM-like intermediate language, relying on a
theorem that allows us to lift single-thread simulation relations to simulations on multithreaded
programs.
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1 Introduction

Program verification relies fundamentally on compiler correctness. Static analyses for safety
or correctness in compiled languages depend implicitly on the fidelity of the compiler to
some abstract semantics for the language, but real-world compilers rarely reflect these
theoretical semantics [17]. The optimization phase of compilation is particularly error-prone:
optimizations are often stated as complex algorithms on program code, with only informal
justifications of correctness based on an intuitive understanding of program semantics.
Formal methods researchers have devoted considerable effort to verifying these optimizations,
either on a program-by-program basis (the translation validation approach [13]), or by
general proof of correctness for all possible inputs (the approach taken, for instance, in
the CompCert verified C compiler [7]). The problem is only aggravated in the presence
of concurrency. Insufficiently analyzed optimizations may result in unreliable execution of
concurrent code; compiler writers may even end up having to limit the scope and complexity
of the optimizations they develop, in the absence of a method to demonstrate the safety of
their optimizations.

In this paper, we present a new methodology for stating and verifying the correctness of
compiler optimizations and transformations in the presence of concurrency, centered around a
domain-specific language for specifying optimizations as transformations on program graphs
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with temporal logic side conditions. This language, PTRANS, has been formalized in the
Isabelle proof assistant [12], so that optimizations expressed in PTRANS can be proved
correct with the assistance of state-of-the-art theorem-proving tools, as well as an executable
semantics allowing specifications to serve as optimization prototypes. As a proof of concept,
we use PTRANS to express and verify an optimization under several different concurrent
memory models. Ultimately, we hope that the approach outlined in this paper will assist both
formal verifiers and compiler writers in creating complex, concurrency-safe optimizations.

2 The PTRANS Specification Language

2.1 PTRANS: Adapting TRANS to Parallel Programs
The basic approach of the PTRANS specification language is that set out by Kalvala et al.
in TRANS [4]: optimizations are specified as rewrites on program code in the form of control
flow graphs (CFGs), with side conditions given in temporal logic. The syntax of PTRANS is
given by the following grammar:

A ::= add_edge(n, m, `) | remove_edge(n, m, `) | split_edge(n, m, `, p)
| replace n with p1, ..., pm

ϕ ::= true | p | ϕ ∧ ϕ | ¬ϕ | A ϕ U ϕ | E ϕ U ϕ | A ϕ B ϕ | E ϕ B ϕ | ∃x. ϕ

T ::= A1, ..., Am if ϕ | MATCH ϕ IN T | T THEN T | T � T | APPLY_ALL T

The atomic actions A include add_edge and remove_edge, which add and remove (`-labeled)
edges between the specified nodes; split_edge, which splits an edge between two nodes,
inserting a new node between them; and replace, which replaces the instruction at a given
node with a sequence of instructions, adding new nodes to contain the instructions if necessary.
Kalvala et al. have shown that a wide range of common program transformations can be
expressed using these basic rewrites. The arguments to the atomic actions represent nodes
and instructions in the program graph, but may contain metavariables that are instantiated
to program objects when the rewrites are applied.

At the top level, a transformation T is built out of conditional rewrites combined with
strategies. The term A1, ..., Am if ϕ is the basic pairing of one or more rewrites with a
first-order CTL side condition, which may include the forward until-operator U , its backward
counterpart B, and quantifiers over the metavariables appearing in its atomic predicates
p. The expression MATCH ϕ IN T provides an additional side condition for a set of
transformations, and also allows metavariables to be bound across multiple rewrites. The
THEN and � operators provide sequencing and (nondeterministic) choice respectively, and
APPLY_ALL T recursively applies T wherever possible until it is no longer applicable to
the graph under consideration.

2.2 Concurrent Control Flow Graphs
The TRANS-style approach depends fundamentally on a notion of control flow graph (CFG).
The atomic rewrites are rewrites on CFGs, and the CTL side conditions are evaluated on
paths through CFGs. Thus, we require a concurrent analogue to the CFG in order to extend
the approach to the concurrent setting. The particular model used here, adapted from the
work of Krinke [5], is the threaded control flow graph (tCFG). In our framework, a tCFG is
simply a collection of non-intersecting CFGs, one for each thread in a program. Formally:

I Definition 1. A CFG is a labeled directed graph (N, E, Start, Exit, L) where N is a set of
nodes, E ⊆ N × T ×N is a set of T -labeled edges (where T is given by the target language,
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but must contain the label seq), Start, Exit ∈ N are the distinguished Start and Exit nodes
of the graph, and L : N → I assigns a program instruction to each node, such that: Start
has no incoming edges, Exit has no outgoing edges, and the outgoing edges of each node
except Exit correspond properly to the instruction label at that node, where the required
correspondence is determined by the target language. A tCFG is a collection of disjoint
CFGs, one for each thread in the program being represented. If G is a tCFG and t is a
thread, we write Gt for the CFG of t in G.

Paths through a tCFG can then be defined as sequences of vectors of program points, one
per thread, and we can use CTL to state properties over tCFGs such as “no load occurs before
the following store”. The set of atomic predicates used in side conditions may depend on the
target language under consideration; here we present some of the fairly general predicates
used for our case study. These predicates break down into two types: those that depend on
the state (i.e., map from threads to program points) in which they are evaluated, and those
that do not (i.e., those that check some global property of the tCFG under consideration).
State-based predicates include:

nodet(n), which is true of a state q when qt = n.
stmtt(i), which is true of a state q when the instruction at q is i in Gt.
outt(ty, n′), which is true of a state q when qt has an outgoing edge to n′ with label ty in
Gt.

State-independent predicates include:

conlit(e), which is true when e represents a program constant.
varlit(e), which is true when e represents a program variable (in our case study, we further
distinguish between local (lvarlit) and global (gvarlit)).

Note that all of these predicates are purely syntactic static properties of tCFGs. This is
not a coincidence: PTRANS optimizations can be stated and executed independently of the
semantics of the target language, so that PTRANS may serve as a design tool even in the
absence of formal semantics for the target language. Although we may quantify over paths
in our side condition, these are paths through the syntax of a program as expressed in a
tCFG, rather than dynamic executions of the program. Of course, when reasoning about the
correctness of a transformation, we will need to relate these static properties to dynamic
properties of program executions.

We also provide several extended predicates that allow the integration of outside analyses
into CTL conditions. These predicates include:

cannot_aliast(e, e′), which is true of a state q when alias analysis can show that e and e′

are not pointers to the same location in t at q.
in_criticalt(e, x), which is true of a state q when mutex analysis can show that qt is part
of a critical section for e protecting the value of x.
protectedt(e, x), which is true when mutex analysis can show that the value of x is only
changed in critical sections for e.

We incorporate these analyses by providing an axiomatization of the properties of a correct
analysis (e.g., that if cannot_aliast(e, e′) holds then e and e′ do not point to the same
location in any execution), and use these axioms to construct proofs of correctness for an
optimization independently of the particular implementation of the analysis used to execute
the optimization. The semantics of PTRANS actions and strategies can then be taken
directly from our previous formalization of the TRANS system [11] to PTRANS. We have
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also developed an execution engine for PTRANS in F#, using the Z3 SMT solver to find
solutions to the side conditions, so that we can test optimizations on actual CFGs before
engaging in the heavy-duty work of verification.

3 Concurrent Memory Models

In order to verify optimizations on a target language, we must first provide semantics for
that language – but before that, we must define our notion of concurrency. Our approach
is to give operational semantics to target languages over CFGs, and to parameterize those
definitions by a concurrent memory model. A concurrent memory model provides an answer
to the question, “what are the values that a memory read operation can read?” Almost every
processor architecture has its own answer to this question, and many have more than one.
Adding to the confusion, many of these models, including the one specified for LLVM [9],
are not operational; they are phrased as conditions on total executions, rather than as
properties that can be checked in individual steps of an operational semantics. As part of the
development of PTRANS, we have developed a general approach to specifying operational
concurrent memory models. Our memory models must support four functions:

can_read, the workhorse of the memory model, which returns the set of values that a
thread can see at a given memory location
free_set, which returns the set of locations that are free in the memory
start_mem, which gives a default initial memory
update_mem, which updates a memory with a set of memory operations performed by
various threads

We define three instances of this axiomatization for use in our example: sequential
consistency (SC), total store ordering (TSO), and partial store ordering (PSO). Sequential
consistency, the most intuitive memory model, requires that every execution observed
could have been produced by some total order on the memory operations in the execution.
Operationally, this can be modeled by requiring each read of a location to see the most recent
write to that location. We implement SC with a map from memory locations to values and a
straightforward implementation of the four required functions. The function can_read looks
up its target in the memory map; free_set returns the set of locations with no values in the
map; start_mem is the empty map; and update_mem applies the given memory operations
to the map, storing a new value on a write or arw, initializing the location with a starting
value on an alloc, and clearing the location on a free.

The TSO and PSO models are slightly more complex: they allow writes to be delayed
past other instructions (reads of other locations in TSO; reads and writes to other locations
in PSO), resulting in executions such as the one shown (in pseudocode) in Figure 1. Under
SC, if one of the read instructions returned 0 in an execution, then we would be forced to
conclude that the write instruction in the same thread executed before it, and so the other
read could only read a value of 1. Under TSO, however, the writes may be delayed past the

Start: `1 7→ 0 and `2 7→ 0
write `1 1 write `2 1
x := read `2 y := read `1

Result: x = 0 ∧ y = 0

Figure 1 Behavior forbidden by SC but allowed in TSO.
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reads, allowing both reads to return 0. As shown by Sindhu et al. [14], this behavior can be
modeled by associating a FIFO write buffer with each thread (or, for PSO, a write buffer
per memory location for each thread). When a write operation is performed, it is inserted
into the executing thread’s write buffer; at any point, the oldest write in any thread’s write
buffer may be written to the shared memory. A read operation first looks for the most recent
write to the location in the thread’s write buffer, and if none exists reads from the location
in the shared memory. In this model, atomic arw operations serve as memory fences: they
are not executed until the write buffer of the executing thread is cleared.

Some optimizations, particularly those that do not involve memory in any way, may be
proved correct independently of the memory model. However, one of the purposes of relaxed
memory models is to allow a wider range of optimizations, so we expect that most interesting
optimizations will depend on the memory model being used. In general, some memory models
are strictly more permissive than others – for instance, every execution produced under
SC can also be produced under TSO – but depending on our notion of correctness, it may
not follow that every valid SC optimization is also a valid TSO optimization, since an SC
optimization may rely on the correctness of, e.g., a locking mechanism that only functions
properly under SC.

4 MiniLLVM: A Sample Intermediate Language

In this section we present MiniLLVM, a language based on the LLVM intermediate lan-
guage [9], for use as a target for transformation. The syntax of MiniLLVM is defined as
follows:

expr ::= %x | @x | c type ::= int | type∗

instr ::= %x = op type expr , expr |%x = icmp cmp type expr , expr | br expr | br |
%x = call type (expr , ..., expr) | return expr | alloca %x type |
%x = load type∗ expr | store type expr , type∗ expr |
%x = cmpxchg type∗ expr , type expr , type expr | is_pointer expr

(Note that the *’s indicate not repetition but pointer types.) Because the targets of control-
flow instructions are implicit in the CFG, label arguments to br instructions and function
names in call instructions are omitted. We give semantics to the language by specifying a
labeled transition relation on program configurations. The single-thread semantics is given
by the transition relation G, t, m ` (p, env, st, al) a→ (p′, env′, st′, al ′) where G is the CFG
representing the thread, t is the thread name, m is the shared memory, p is a program point,
env is an environment giving values for thread-local variables, st is the call stack for the
thread, al is a record of the memory locations allocated by the thread, and a is the set of
memory operations performed by the thread. Memory operations are chosen from:

a ::= read t loc v | write t loc v | arw t loc v v | alloc t loc | free t loc

where arw represents an atomic read-and-write operation (as performed by the cmpxchg
instruction). Several of the semantic rules for MiniLLVM instructions are shown in Figure 2.
In the figure, Label G p indicates the instruction label assigned to node p in the CFG G, and
next ` p indicates the node reached along an outgoing `-labeled edge from p.

A concurrent configuration is a vector of configurations, one for each thread, paired with
a shared memory. The concurrent semantics of MiniLLVM is given by a single rule:

Gt, t, m ` statest
a→ (p′, env′, st′, al ′) update_mem m a m′

(states, m)→ (states(t 7→ (p′, env′, st′, al ′)), m′)

WPTE’14
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Label G p = (%x = op ty e1, e2) (e1 op e2, env) ⇓ v

G, t, m ` (p, env, st, al)→ (next seq p, env(x 7→ v), st, al)

Label G p = (br e) (e, env) ⇓ v v 6= 0
G, t, m ` (p, env, st, al)→ (next true p, env, st, al)

Label G p = (alloca %x ty) loc ∈ free_set m

G, t, m ` (p, env, st, al) alloc t loc−−−−−−→ (next seq p, env(x 7→ loc), st, al ∪ {loc})

Label G p = (store ty1 e1, ty2
∗ e2) (e1, env) ⇓ v (e2, env) ⇓ loc

G, t, m ` (p, env, st, al) write t loc v−−−−−−−−→ (next seq p, env, st, al)

Figure 2 Some single-thread transition rules for MiniLLVM.

In other words, we produce a concurrent step simply by selecting one thread to take a step,
and then updating the memory with the memory operations performed by that thread.

5 Verification

5.1 Defining Correctness
Before we can begin verifying an optimization, we must clearly state what it means for an
optimization to be correct. The semantics of a compiler transformation can be expressed
denotationally in terms of the program graphs that may be produced as a result of the
transformation on a given input graph. We can call a transformation T correct if, for any
graph G, any graph G′ output by applying T to G has some desired property relative to G.
We will use observational refinement [3] as our sense of correctness; in other words, we will
require that any observable behavior of G′ is also an observable behavior of G, implying that
T does not introduce any new behaviors. We will prove this refinement via simulation [2]:

I Definition 2. A simulation is a relation � on two labeled transition systems P and Q

such that for any states p, p′ of P and q of Q, for any label k, if p � q and p
k→P p′, then

∃q′. q
k→Q q′ and p′ � q′. By abuse of notation we write P � Q and say that Q simulates P .

The concurrent step relation of MiniLLVM as presented is unlabeled, but we can add labels
to indicate the portion of the program’s behavior that should be considered observable, which
will generally be some portion of the shared memory. For each optimization to be verified,
we will choose the maximum possible subset of shared memory as our observables, and state
a simulation relation that relates any transformed graph to its original input. (Note that
for more complex optimizations, more flexible relations such as weak (stuttering) simulation
may be required, but the overall structure of the proof will remain unchanged.)

While PTRANS is expressive enough to allow optimizations that transform multiple
threads simultaneously, many optimizations (especially concurrent retoolings of sequential
optimizations) only transform a single thread. The following theorem allows us to extend a
correct simulation relation on states in a single-thread CFG to one on entire tCFG states:

I Definition 3. Let the execution state of a multithreaded program with tCFG G be a pair
(states, m), where states is a vector of per-thread execution states and m is a shared memory.
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The lifting of a simulation relation � on single-threaded CFGs to concurrent execution states
relative to a thread t is defined by (states, m) d�et (states′, m′) , (statest, m) � (states′t, m′)
∧ ∀u 6= t. statesu = states′u.

I Theorem 4. Fix a memory model supporting the functions free_set, can_read, and
update_mem. Let G be a tCFG, t be a thread in G, and obs be the set of observable
memory locations. Suppose that � is a simulation relation such that G′t � Gt, G′u = Gu for
all u 6= t, and for all (s′, m′) � (s, m) the following hold:
1. free_set m = free_set m′

2. For any u 6= t, if u,Gu, m′ ` s1
a−→ s2, then can_read m u ` = can_read m′ u ` for every

location ` mentioned in an operation in a

3. For any u 6= t, if u,Gu, m ` s1
a−→ s2 and update_mem m′ a m′2 holds, then there exists

some m2 such that update_mem m a m2 holds, m2|obs = m′2|obs, and (s′, m′2) � (s, m2)
Then d�et is a simulation relation such that G′ d�et G.

While the exact conditions of the theorem are complicated, the intuition is straightforward:
if � is a simulation relation for Gt and G′t such that (s′, m′) � (s, m) implies that m and
m′ look the same to all threads u 6= t, and � is preserved by steps of threads other than
t, then d�et is a simulation relation for G and G′. This theorem allows us to break proofs
of correctness for transformations on multithreaded programs into two parts: correctness
of the simulation on the transformed thread, and validity of the relation with respect to
the remaining threads. Note that in the case in which the simulation relation requires that
m = m′, i.e., in which the optimization does not change the effects of Gt on shared memory,
most of these conditions are trivial. In optimizations that affect the shared memory, on the
other hand, the proof of the theorem’s premises will involve some effort.

5.2 Specifying an Optimization
In the following sections, we will show the use of PTRANS in verifying an optimization. The
candidate optimization is Redundant Store Elimination (RSE), which eliminates stores that
are always overwritten before they are used, as in Figure 3. Note that s is replaced by an
is_pointer instruction, rather than being eliminated entirely, to preserve failures: if e2 is
not pointer-valued at s the program will fail immediately, while eliminating s would allow
the program to run until reaching s′, potentially introducing new behavior.

In sequential code, the optimization is safe if, between the eliminated store s and the
following store s′, the location referred to by e2 is not read and the value of e2 is not changed.
In the concurrent case, the correctness condition is more complex, since changes to a memory
location can be observed by other threads. We will give a correct version of RSE for each of
our three memory models. We begin with the rewrite portion of the transformation, which is
the same in all cases, and the common portion of the side condition: the basic pattern that

Figure 3 Redundant Store Elimination.

WPTE’14
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describes the node to be transformed, and a placeholder for the remaining conditions (note
that the condition is checked starting at the entry node of the tCFG):

replace n with is_pointer e2 if
EF nodet(n) ∧ stmtt(store ty1 e1, ty∗2 e2) ∧ ϕ

Now, for each memory model, we need only provide a condition ϕ that ensures that the
optimization is safe to perform. In general, this will be an “until”-property stating necessary
conditions on the nodes between n and the next store to e2.

Sequential consistency, the most restrictive of our three memory models, naturally has
the most restrictive side condition. There are two approaches to securing the optimization:
we could require that no memory operations occur between n and the following store, or we
could require that e2 be private to t. In this example we will take the second approach, using
an external mutual exclusion analysis to ensure that e2 is not exposed to other threads while t

is in the region between n and the following store to e2. Using the mutex predicates described
in Section 2.2 and a defined not_touchest predicate that checks that a given memory location
cannot be read or modified by t, the condition can be written as:

ϕSC , protected(x, e2) ∧ gvarlit(e2) ∧ ¬is(x, e2) ∧
A in_criticalt(x, e2) ∧ (nodet(n) ∨ not_touchest(e2))
U (in_criticalt(x, e2) ∧ ¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1e′1, ty′2 e2))

Next we will consider the appropriate side condition for the TSO memory model. Since
TSO allows writes to be delayed past certain other operations, in a program with a redundant
store, it is possible that the redundant store may be delayed until immediately before the
following store to e2. If this behavior is possible in the original program, then removing the
store will not introduce new behavior. Thus, our side condition need only characterize the
circumstances under which the store at n could have been delayed in the original program.
In TSO, a write can be delayed past reads to different locations, but not past writes or
atomic read-writes. Thus, the necessary side condition is as follows, where not_loads checks
that no load instructions read from a location and not_mods ensured that the value of an
expression is not changed:

ϕTSO , AXt(A not_modst(e2) ∧ not_loadst(e2) ∧
¬(∃x, ty1, e1, ty2, e′2, ty3, e3. stmtt(store ty1 e1, ty∗2 e′2) ∨
stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))
U (¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1 e′1, ty′2 e2)))

where AXt is a derived temporal operator defined such that AXtϕ iff ϕ is true in every state
in which the thread t has advanced by one node (regardless of the behavior of other threads).
The fragment of the condition inside the AXt operator provides a useful characterization of the
nodes between n and the following store to e2; we will call it ϕ′TSO, where ϕTSO = AXt ϕ′TSO.
Note that ϕSC is also a reasonable side condition under TSO, and we could form a more
general optimization by using ϕSC ∨ ϕTSO as our side condition.

The relaxation of the PSO memory model is a more permissive version of that of TSO,
so we can obtain a side condition for it by relaxing the constraints of ϕTSO. A write in PSO
can be delayed past reads and writes to different locations, but not past operations on the
same location or atomic read-writes, so the corresponding side condition is:

ϕPSO , AXt(A not_modst(e2) ∧ not_touchest(e2) ∧
¬(∃x, ty1, e1, ty2, e′2, ty3, e3. stmtt(%x = cmpxchg ty∗1 e1, ty2 e′2, ty3 e3))
U (¬nodet(n) ∧ ∃ty′1, e′1, ty′2. stmtt(store ty′1e′1, ty′2 e2)))
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This condition is strictly weaker than ϕTSO, allowing the optimization to be applied to a
wider range of programs. As above, we also define ϕ′PSO such that ϕPSO = AXt ϕ′PSO for
use in our proofs of correctness.

5.3 Verification of RSE
We are now ready to demonstrate the correctness of MiniLLVM RSE in PTRANS. As laid out
in Section 5.1, we prove correctness by showing that for any transformed tCFG G′ produced
by applying the optimization to a graph G, there exists a simulation relation � such that
G′t � Gt, states related by � make the same values visible to threads other than t, and steps
by threads other than t preserve �. For each version of RSE, we will present such a relation
and sketch the proof of its correctness.

I Theorem 5. Let G′ be a tCFG in the output of RSE(ϕSC ) on a tCFG G, and ` be the
location targeted by the redundant store removed in G′. Let �SC be the relation such that
(s′, m′) �SC (s, m) iff

s = s′

either ` ∈ free_set m and ` ∈ free_set m′, or ` /∈ free_set m and ` /∈ free_set m′

either m = m′, or else ϕSC holds at the program point of s in G and m|` = m′|`.

Then d�SCet is a simulation relation such that G′ d�SCet G with all locations other than `

observable.

Proof. Consider two related states (s, m) of Gt and (s′, m′) of G′t. In case (1), the only
interesting case is the one in which s is at the transformed node n; in this case, G′t executes
the is_pointer instruction and Gt executes the store instruction. Since the side condition
of the RSE transformation is true on G, we know that ϕSC holds at n, and so �SC holds on
the resulting states. If, on the other hand, we are in case (2), then we know that ϕSC holds,
so s must be in the region between n and the next store to e2. If we have not yet reached the
next store to e2, then since �SC holds we know that it does not read or modify the memory
at `, and we can conclude that Gt and G′t execute the same instruction and arrive in new
configurations (s2, m2) and (s′2, m′2) such that m2 and m′2 differ only at ` and ϕSC still holds.
The guarantees of mutual exclusion ensure the separation of threads required by Theorem 4,
and we can conclude that d�SCet is a simulation relation showing the correctness of the SC
version of RSE. J

Recall that, while in SC the memory is simply a map m from locations to values, in
TSO and PSO it is a pair (m, b) of a shared memory and per-thread write buffers. Since the
correctness of our conditions under these models depends on our ability to delay stores until
they become redundant, we must have a notion of one buffer being a “redundant expansion”
of another.

I Definition 6. A write buffer is a queue of writes expressed as location-value pairs. A write
buffer b′ is a redundant expansion of b if b′ can be constructed from b by adding, in front of
each pair (`, v) in b, zero or more writes of other values to `. We will say that a collection
of write buffers c′ is a redundant expansion of a collection c when each write buffer c′t is a
redundant expansion of the corresponding write buffer ct.

Because the added writes appear immediately in front of other writes to the same location,
they can be immediately overwritten when the buffers are cleared, and are never read when
looking for the latest write to a location. This allows a redundant expansion of b to simulate
the behavior of b with regard to the memory-model functions.

WPTE’14



24 Verifying Optimizations for Concurrent Programs

I Theorem 7. Let G′ be a tCFG in the output of RSE(ϕTSO) on a tCFG G. Let �TSO be
the relation such that (s′, (m′, b′)) �TSO (s, (m, b)) iff

s = s′, m = m′, and bu = b′u for all u 6= t, and
either (1) bt is a redundant expansion of b′t, or else (2) ϕ′TSO holds at the program point
of s in G, the store eliminated in G′ was to some expression e2, and there is a location `

such that e2 evaluates to ` in s, the last write in bt is a write to `, and the rest of bt is a
redundant expansion of b′t.

Then d�TSOet is a simulation relation such that G′ d�TSOet G with all locations observable.

Proof. By Theorem 4. Consider two related states (s, (m, b)) of Gt and (s′, (m′, b′)) of G′t. If
bt is a redundant expansion of b′t (case 1), then the only interesting case is the one in which
s is at the transformed node n; in this case, G′t executes the is_pointer instruction, and Gt

executes the store instruction, evaluating e2 to some location ` and adding a write to ` to
its buffer – thus the resulting buffer has the structure described in case (2). Since the side
condition of the RSE transformation is true on G, we know that ϕTSO = AXt ϕ′TSO holds at
n, and so �TSO holds on the resulting states. If, on the other hand, we are in case (2), s

must be in the region between n and the next store to e2. If s is at a store to e2 other than
n, then both G and G′ commit a write to `; since bt was a redundant expansion of b′t followed
by a write to `, this new write makes the last one redundant, and we are now in case (1). If
s is somewhere between n and the following store, then since ϕ′TSO holds we know that the
current instruction does not read the memory at ` and is neither a store nor a cmpxchg, so
we can conclude that Gt and G′t execute the same instruction with the same result, that the
instruction adds no new writes to t’s write buffer, and that the extra write to ` in bt is not
forced into main memory (as it would be by a cmpxchg instruction). Thus, case (2) of �TSO
still holds. Since the only difference in states allowed by �TSO is in the write buffer for t,
which is neither visible to nor affected by threads other than t, the separation of threads
required by Theorem 4 holds, and we can conclude that d�TSOet is a simulation relation
showing the correctness of the TSO version of RSE. J

I Theorem 8. Let G′ be a tCFG in the output of RSE(ϕPSO) on a tCFG G. Let �PSO be
the relation such that (s′, (m′, b′)) �PSO (s, (m, b)) iff

s = s′, m = m′, bu,` = b′u,` for all ` and all u 6= t, and
either (1) bt,` is a redundant expansion of b′t,` for all `, or else (2) ϕ′PSO holds at the
program point of s in G, the store eliminated in G′ was to some expression e2, and there is
a location ` such that e2 evaluates to ` in s, bt,` is a redundant expansion of b′t,` followed
by a write to `, and bt,`′ is a redundant expansion of b′t,`′ for all other locations `′.

Then d�PSOet is a simulation relation such that G′ d�PSOet G with all locations observable.

Proof. By Theorem 4. The proof is nearly identical to that of the TSO case. Since write
buffers are per-location, store instructions to locations other than ` may be executed between
the eliminated store and the following write to ` without changing the relationship between
bt,` and b′t,`, justifying the weaker side condition; otherwise, the proof proceeds entirely
analogously. J

In this manner, PTRANS allows us to express and verify optimizations under a variety of
memory models, sharing information between specifications and proofs of similar transforma-
tions. All of the above proofs have been carried out in full formal detail in the Isabelle proof
assistant, and can be found online at http://web.engr.illinois.edu/~mansky1/ptrans.

http://web.engr.illinois.edu/~mansky1/ptrans
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6 Conclusions and Related Work

In this paper we present the PTRANS specification language, in which optimizations are
expressed as conditional rewrites on program syntax, and show how it can be used to state and
verify compiler optimizations. We outline a method for stating and verifying optimizations
that transform a single thread in a multithreaded program, with some parts independent of
and others dependent on the memory model under consideration. We use this method to
verify a redundant store elimination optimization on an LLVM-based language under three
memory models, showing that the behaviors of every output program are possible behaviors
of the input program. In combination with the executable semantics for PTRANS, which
allows PTRANS specifications to serve as prototype optimizations [10], the methodology here
presented forms the basis of a new framework for specifying, testing, and verifying compiler
optimizations in the presence of concurrency.

Our work builds on the TRANS approach due to Kalvala et al. [4]. Among the tools that
build on this approach is the Cobalt specification system [6], which aims to automatically
prove the correctness of optimizations. This automation comes at the cost of expressiveness:
Cobalt is limited to a much smaller set of CTL side conditions than TRANS (or PTRANS)
in general. While interactive proofs require considerably more effort, using a standard
framework for proofs across different memory models and target languages can reduce the
burden by allowing common facts (about simulation, CTL over CFGs, etc.) to be proved
once and for all. To the best of our knowledge, neither Cobalt nor any other TRANS-style
work has yet addressed the problem of concurrency.

The most comprehensive compiler correctness effort to date is CompCertTSO [16], the
extension of CompCert [7] to the TSO memory model. CompCertTSO includes a range of veri-
fied optimizations on intermediate languages at various levels, as well as verified translations
between languages, while we have thus far only verified same-language transformations. Our
approach has the advantage of language- and memory-model independence; our framework
also allows us to separate out the correctness condition for a concurrent optimization into a
simulation relation on a single thread and side conditions on the remaining threads, while
the one concurrency-aware optimization verified in CompCertTSO involves a whole-program
simulation proof. Ševčík [15] has also verified various optimizations, including redundant
instruction eliminations, in a language-independent manner under data-race-free sequential
consistency, specifying optimizations directly as transformations on the executions traces of
programs (which may not directly correspond to modification of program code).

Burckhardt et al. [1] have developed a method of verifying optimizations under relaxed
memory models by specifying memory models as sets of rewrite rules on program traces and
optimizations as rewrites on local fragments of a program. Their proofs are fully automatic,
using the Z3 SMT solver to check that all traces allowed by a transformed program fragment
could be produced by applying the rewrite rules allowed by the memory model to the traces
of the original program. They rely on a denotational semantics for their target language that
gives the set of possible program traces for every program, and thus far have only verified
transformations on single instructions or pairs of immediately adjacent instructions (including
a simple RSE); their method does not obviously extend to transformations that require
analysis over fragments of the program graph of indefinite size (e.g., all the instructions
between one instruction and another).

Thus far, we have only verified optimizations that transform one thread at a time, assisted
by a theorem that allows us to lift single-thread simulation relations to simulations on
multithreaded CFGs. If we expand our scope to optimizations that transform multiple
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threads simultaneously (as might be done in some lock-related transformations), we may
require both an extended language of side conditions and more general proof techniques,
such as the rely-guarantee approach found in RGSim [8]. Similar approaches may help us
handle other models of parallel programming, such as fork-join parallelism.
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