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1 University of Illinois at Chicago, Chicago, IL, USA
2 Yale University, New Haven, CT, USA

3 Princeton University, Princeton, NJ, USA

Abstract. Separation logic is a useful tool for proving the correctness of
programs that manipulate memory, especially when the model of memory
includes higher-order state: Step-indexing, predicates in the heap, and
higher-order ghost state have been used to reason about function point-
ers, data structure invariants, and complex concurrency patterns. On
the other hand, the behavior of system features (e.g., operating systems)
and the external world (e.g., communication between components) is
usually specified using first-order formalisms. In principle, the soundness
theorem of a separation logic is its interface with first-order theorems,
but the soundness theorem may implicitly make assumptions about how
other components are specified, limiting its use. In this paper, we show
how to extend the higher-order separation logic of the Verified Software
Toolchain to interface with a first-order verified operating system, in
this case CertiKOS, that mediates its interaction with the outside world.
The resulting system allows us to prove the correctness of C programs
in separation logic based on the semantics of system calls implemented
in CertiKOS. It also demonstrates that the combination of interaction
trees + CompCert memories serves well as a lingua franca to interface
and compose two quite different styles of program verification.

Keywords: formal verification · verifying communication · modular ver-
ification · interaction trees · VST · CertiKOS

1 Introduction

Separation logic allows us to verify programs by stating pre- and postconditions
that describe the memory usage of a program. Modern variants include reasoning
principles for shared-memory concurrency, invariants of locks and shared data
structures, function pointers, rely-guarantee-style reasoning, and various other
interesting features of programming languages. To support these features, the
“memory” that is the subject of their assertions is not just a map from addresses
to values, but something more complex: it may contain “predicates in the heap”
to allow reasoning about invariants attached to dynamically allocated objects
such as semaphores, it may be step-indexed to allow higher-order assertions, and
it may contain various forms of ghost state describing resources that exist only
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for the purposes of verification. The soundness proof of the logic then relates
these decorated heaps to the simple address-map view of memory used in the
semantics of the target language.

This works well as long as every piece of the system is verified with re-
spect to decorated heaps, but what if we have multiple verification tools, some
of which provide correctness results in terms of undecorated memory (or, still
worse, memory with a different set of decorations)? To take advantage of the
correctness theorem of a function verified with one of these tools, we will need
to translate our decorated memory into an undecorated one, demonstrate that
it meets the function’s undecorated precondition, and then take the memory
output by the function and use it to reconstruct a decorated memory. In this
paper, we demonstrate a technique to do exactly that, allowing higher-order
separation logics (in this instance, the Verified Software Toolchain) to take ad-
vantage of correctness proofs generated by other tools (in this case, the CertiKOS
verified operating system). This allows us to remove the separation-logic-level
specifications of system calls from our trusted computing base, instead relying
on the operating system’s proofs of its own calls. In particular, we are interested
in functions that do more than just manipulate memory (which is separation
logic’s specialty)—they communicate with the outside world, which may not
know anything about program memory or higher-order state.

int main(void) {
unsigned int n, d; char c;
n=0;
c=getchar();
while (n<1000) {

d = ((unsigned)c)-(unsigned)’0’;
if (d>=10) break;
n+=d;
print int(n);
putchar(’\n’);
c=getchar();
}
return 0;
}

Fig. 1: A simple communicating program

Consider the program in Figure 1. It repeatedly reads a digit from the
console, adds it to the sum of the digits seen so far, and prints the current
sum to the console. Although this is a very simple program, it is not a nat-
ural fit for separation-logic-based verification tools, which model the behavior
of C programs in terms of computation and memory rather than I/O. Sev-
eral approaches have been suggested for reasoning about I/O in separation
logic, for instance by Penninckx et al. [18] and Koh et al. [13]. Using the lat-
ter approach, we might specify the behavior of getchar with the Hoare triple
{ITree(r ← read; ; k r)} x = getchar() {ITree(k x)}, relating the function call to
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an external read event: the program before the call to getchar must have per-
mission to perform a sequence of operations beginning with a read, and after the
call it has permission to perform the remaining operations (with values that may
depend upon the received value). By adding these specifications as axioms to
VST’s separation logic, we can use standard separation logic techniques to prove
the correctness of programs such as the one above. But when we compile and
run this C program, putchar and getchar are not axiomatized functions; they
are system calls provided by the operating system, which may have an effect
on kernel memory, user memory, and of course the console itself. If we prove
a specification of this C program using the separation logic rules for putchar
and getchar, what does that tell us about the behavior of the program when it
runs? For programs without external calls, we can answer this question with the
soundness proof of the logic. To extend this soundness proof to programs with
external calls, we must relate the pre- and postconditions of the external calls
to both the semantics of C and their implementations in the operating system.

In this paper, we describe a modular approach to proving soundness of a ver-
ification system for communicating programs, including the following elements:

– An extension of VST with support for generic ghost state.
– A generic mechanism for reasoning about external communication in a higher-

order separation logic, built on top of ghost state.
– A technique for relating pre- and postconditions for external functions in

higher-order separation logic to first-order specifications of the same func-
tions in the verified operating system CertiKOS, with a general approach to
“de-step-indexing” a certain class of step-indexed specifications.

– A new notion of correctness of the implementation of external communi-
cation, by relating user-level traces of external behavior to I/O operations
inside the operating system.

The result is the first soundness proof of a separation logic that can be extended
with first-order specifications of system calls. All proofs are formalized in the
Coq proof assistant.

To understand the scope of our results, it is important to clarify exactly
how much of CertiKOS we have brought into our proofs of correctness for C
programs, and how much of a gap remains. The semantics on which we prove
the soundness of our separation logic is the standard CompCert semantics of
C, extended with the specifications of system calls provided by CertiKOS. Our
model does not include the process by which CertiKOS switches from user mode
to kernel mode when executing a system call, but rather assumes that CertiKOS
implements this process so that the user cannot distinguish it from a normal
function call. To prove this assertion rather than assuming it, we would need to
transfer our soundness proof to the whole-system assembly-language semantics
used by CertiKOS, and interface with not just CertiKOS’s system call specifica-
tions but also its top-level correctness theorem. We discuss this last gap further
in Section 7, but in summary, we prove that our client-side programs and OS-side
system calls are correct, while assuming that CertiKOS correctly implements its
transition between user mode and kernel mode.
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The rest of the paper proceeds as follows. In Section 2, we describe generic
ghost state in separation logic. In Section 3, we show how to encode the state
of the outside world as ghost state that can only be changed through calls to
external functions, allowing us to describe external communication in separation
logic specifications. In Section 4, we use this approach to specify console I/O op-
erations, and demonstrate the verification of a simple communicating program.
In Sections 5 and 6, we describe the process of verifying the implementation of
an external call, by first connecting its VST specification to a first-order speci-
fication on memory and then relating that “dry” specification to the functional
specification of the same call in CertiKOS. This allows us to state our central
theorem, which guarantees that programs verified in VST run correctly given the
CertiKOS system call specifications. In Section 7, we address the relationship
between user-level events and the actual communication performed by the OS.
In Sections 8 and 9, we review related work and summarize our results.

2 Background: Ghost State in Separation Logic

2.1 Ghost Algebras

The fundamental insight behind ghost state is that if a mathematical object
has the same basic properties as a separation logic heap, it can be injected
into separation logic as a resource, even if it is not actually present in program
memory. This insight was discovered independently by many people [4,3,19], and
the “basic properties” required have been characterized in many ways: partial
commutative monoids (PCMs), resource algebras, separation algebras, etc. They
all include the idea that the ghost state must support an operator, often written
as ·, for combining it in the same way heaps are combined by disjoint union,
and they require that operator to have some of the properties of heap union
(associativity, commutativity) but not all (for instance, it may be possible to
combine two identical pieces of ghost state). Crucially, the operator · may be
partial, so that the very existence of one piece of state means that another piece
cannot possibly exist in the same program (just as ownership of one piece of the
heap means that no other thread can hold the same piece). We follow Iris [11]
in also including a validity predicate valid that marks out the elements of an
algebra that represent well-formed ghost state.

Ghost state appears in the logic in a new kind of assertion, which we write
as own, asserting that the current thread owns a certain ghost resource. In the
assertion own g a pp, g is an identifier (analogous to a location in the heap), a is
an element of the underlying algebra, and pp is a predicate, allowing for a limited
form of higher-order ghost state—for instance, we can store separation logic
assertions in ghost state to implement global invariants. The key property of the
own assertion is that separating conjunction on it corresponds to the · operator
of the underlying algebra (see rule own op in Figure 2). By defining different
algebras with different operators, we can define different sharing protocols for
the ghost state. For instance, if we only want to count the number of times
some shared resource is used, the state may be a number and the operator
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own op a1 · a2 = a3
own g a3 pp ⇔ own g a1 pp ∗ own g a2 pp

own update
fp update a b

own g a pp V own g b pp

consequence
P V P ′ {P ′} C {Q′} Q′ V Q

{P} C {Q}

Fig. 2: Key separation logic rules for ghost state

may be addition; if we want to describe the pattern of sharing more precisely,
as with ghost variables, the state may be a pair of the variable’s value and a
fraction of ownership, with a guarantee that two fractions are only compatible
if they agree on the value. More complex sharing patterns correspond to more
complicated join operations; for instance, Jung et al. [11] showed that any acyclic
state machine can be encoded as ghost state, with the join operation computing
the closest common successor of two states. The ghost state is not explicitly
referenced by program instructions, but it can be modified at any time via a
frame-preserving update: ghost state a can be replaced with b as long as any
third party’s ghost state c that is consistent with a is also consistent with b,
formally expressed as fp update a b , ∀c, a · c ⇒ b · c, where we write a · b to
mean ∃d. a · b = d, i.e., a and b are compatible pieces of ghost state. This frame-
preserving update is embedded into the logic using a view-shift operator V, as
shown in rule own update of Figure 2.

x = 0;
acquire(l); acquire(l);

x++; x++;

release(l); release(l);

Fig. 3: The increment example

Figure 3 shows the canonical example of a program where ghost state in-
creases the verification power of separation logic. Using concurrent separation
logic as originally presented by O’Hearn [17], we can prove that the value of x

at the end of the program is at least 0, but we cannot prove that it is exactly 2.
This limitation comes from the fact that we can associate an invariant with the
lock l, but that invariant cannot express progress properties such as a change
in the value of x. We can get around this limitation by adding ghost state that
captures the contribution of each thread to x, and then use the invariant to en-
sure that the value of x is the sum of all contributions. (This approach is due to
Ley-Wild and Nanevski [16].) We begin with ghost state that models the central
operation of the program:
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Definition 1. The sum ghost algebra is the algebra (N,+, λn.True) of natural
numbers with addition, in which every number is a valid element.

Intuitively, the lock invariant should remember every addition to x, while each
individual thread only knows its own contribution. This is actually an instance of
a very general pattern: the reference pattern, in which one party holds a complete
and correct “reference” copy of some ghost state, and one or more other parties
hold possibly incomplete “partial” copies. Because the reference copy must al-
ways be completely up to date, the partial copies cannot be modified without
access to the reference copy. When all the partial copies are gathered together,
they are guaranteed to accurately represent the state of the data structure. The
reference ghost algebra is built as follows:

Definition 2. Given a ghost algebra G, we define the positive ghost algebra on
G, written pos(G), as an algebra whose carrier set is (Π ×G) ∪ {⊥}, where Π
is a set of shares.4 An element of pos(G) is valid if it has a nonempty share,
and the operator · is defined such that (π1, a1) · (π2, a2) = (π1 + π2, a1 · a2) and
x · ⊥ = x for all x.

The positive ghost algebra contains pairs of a nonempty share and an element
of G, with join defined pointwise, representing partial ownership of an element
of G. Total ownership of the element can be recovered by combining all of the
pieces, obtaining a full share, and combining all of the G elements accordingly.

Definition 3. Given a ghost algebra G, let the reference ghost algebra on G,
written ref(G), be the algebra (pos(G) × (G ∪ ⊥), ·, {(p, r) | r = ⊥ ∨ p v r}),
where (p1, r) · (p2,⊥) = (p1 · p2, r), and p v r , ∃q. p · q = (>, r).

An element of the reference ghost algebra is a pair of a positive share of G
(partial element) and an optional reference element of G, where the reference
element is unique and indivisible, and the partial element must be completable
to the reference element if one exists. This ensures that when all the shares are
gathered, i.e., when the partial element is (>, a), then it exactly matches the
reference element, but no changes can be made to the partial element without
the reference element present. To more clearly relate elements of this algebra
to their intended meanings, we write ref r for the reference element (⊥, r) and
part s v for the partial element ((s, v),⊥).

Now we can formalize our intuition about what each party knows about the
sum. We let the lock invariant for l be ∃v. x 7→ v ∗ own g (ref v), and start each
thread with a partial element part ½ 0. When each thread acquires its lock and
increments x, it also uses the own update rule to increment its partial ghost state.
At the end of the program, we can combine the two partial elements to obtain
part > 2, which in combination with the lock invariant is sufficient to guarantee
that the value of x is 2. This pattern can be used for a wide range of applications

4 We use tree shares [1, Chapter 41] in the Coq proofs, but for simplicity of presentation
in this paper we will use fractional shares: ⊥ is the empty share, ½ is a half share,
and > is the full share.
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by replacing the sum algebra with one appropriate to the application or data
structure in question. We will also make use of it later to model the state of the
external world as a separation logic resource.

2.2 Semantics of Ghost State

To support the use of ghost state in a separation logic, we need to make two main
changes in the construction of the logic. First, we need to extend the underlying
model of the logic with ghost state: rather than being predicates on the heap,
our assertions are now predicates on the combination of heap and ghost state.
Once ghost state exists in the model, we can give semantics to the own assertion.

Second, we need to change our definition of Hoare triples to allow for the
possibility of frame-preserving updates to ghost state at any point in a program’s
execution. In a ghost-free separation logic, we might define Hoare triples with
respect to an operational semantics for the language as follows:

J{P} c {Q}K , ∀h, P (h)⇒ (c, h)→∗ (done, h′)⇒ Q(h′)

where (c, h)→ (c′, h′) means that the program c executed with starting heap h
may take a step to a new program c′ with heap h′. For a step-indexed logic, it
is more convenient to write this definition inductively:

Definition 4 (Safety). A configuration (c, h) is safe for n steps with postcon-
dition Q if:

– n is 0, or
– c has terminated and Q(h) holds to approximation (step-index) n, or
– (c, h)→ (c′, h′) and (c′, h′) is safe for n− 1 steps with Q.

We can then define {P} c {Q} (at step-index n) to mean that ∀h. P (h)⇒ (c, h)
is safe for n steps with Q.

Once we have added ghost state, our heap h is now a pair (h, g) of physical
and ghost state, and between any two steps the ghost state may change. This
leads us to a ghost-augmented version of safety.

Definition 5 (Safety with Ghost State). A configuration (c, h, g) is safe for
n steps with postcondition Q if:

– n is 0, or
– c has terminated and Q(h, g) holds to approximation n, or
– (c, h) → (c′, h′) and ∀gframe. g · gframe ⇒ ∃g′. (g′ · gframe ∧ (c′, h′, g′) is safe

for n− 1 steps with Q).

The program must be able to continue executing under any gframe consistent
with its current ghost state, but its choice of new ghost state g′ may depend on
the frame. This quantifier alternation captures the essence of ghost state: the
ghost state held by the program constrains any other ghost state held by the
notional “rest of the system”, and may be changed arbitrarily in any way that
does not invalidate that other ghost state.
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3 External State as Ghost State

An I/O-performing program modifies the state of the outside world. We would
like to treat this external state as a kind of ghost state, since it is not in the
program’s memory and yet can be described by separation logic assertions. At
the same time, we would emphatically not like to allow users to make arbitrary
frame-preserving updates to external state: the external environment should have
complete control of the external state, and the program should never be able to
change it except by calling external functions. Furthermore, VST’s semantic
model (used to prove soundness) already includes an external state element5, a
black box of arbitrary type that is carried around by the program and passed to
the environment at each external call, allowing the effects of external calls to be
stateful without explicitly representing their state in program memory. While
this external state is present in the operational semantics of VST, prior to the
changes we describe it could not be referred to by separation logic assertions and
was never instantiated with anything other than the singleton type unit. In this
section, we describe how we combine ghost state with the built-in external state
to make the external state visible in the separation logic.

Intuitively, external state is just another kind of shared resource, and we
should be able to model it with a form of ghost state. However, one of the key
features of ghost state is that programs can make arbitrary frame-preserving
updates to it, while programs should never be able to modify external state. We
can accomplish this using the reference ghost algebra of Section 2: the reference
element ref a will be held by the external environment, while the program holds
a partial element part > a. This ensures that the program cannot make any
frame-preserving updates without the reference element, which is only available
when the program passes control to the external environment via an external
call. It then remains to choose the underlying algebra G of the external state.
Different applications may call for external state with different carrier sets and
operations, but in the simplest case, the VST user will not want to split or
combine the local copy of the external state6. In this case, they can pick a type
Z and make G the exclusive ghost algebra for Z, which holds only an empty
unit element and an indivisible ownership element, preventing the local copy
from being divided. Then the user program holds an element part > a that
cannot be divided or modified, but only passed to the external environment,
where a : Z is the current value of the external state. We encapsulate the ghost
state construction in an assertion has ext a , own 0 (part > a), where 0 is the
identifier reserved for the external ghost state. Now, when verifying a program
with external state, the user simply provides the starting state a, and receives
in the precondition of the main function the assertion has ext a, with no need to
use or understand the ghost state mechanism.

5 Appel et al. [1] call this the external oracle, but we refer to it as simply “external
state” to avoid confusion with the environment oracles of CertiKOS.

6 One example of a use case that benefits from nontrivial external state structure is a
multithreaded web server in which different threads serve different clients simulta-
neously; in this case, each thread might have its own piece of the external state.
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On the back end, we must still modify VST’s semantics to connect the ghost
state a to the actual external state, and to prevent the “ghost steps” of the
semantics from changing the external state. Recall from Section 2 that in order
for a non-terminated configuration (c, h, g) to be safe for a nonzero number
of steps, it must be the case that (c, h) → (c′, h′) and ∀gframe. g · gframe ⇒
∃g′. g′ · gframe ∧ (c′, h′, g′) is safe. To connect the external ghost state to a real
external state z , we simply extend this definition to require that gframe include
an element (⊥, z ) at identifier 0. This enforces the requirement that the value
of the external ghost state always be the same as the value of the external
state, and ensures that frame-preserving updates cannot change the value of the
external state. Re-proving the separation logic rules of Verifiable C with this new
definition of Hoare triple required only minor changes, since internal program
steps never change the external ghost state.

When the semantics reaches an external call, the call is allowed to make
arbitrary changes to the state consistent with its pre- and postcondition, in-
cluding changing the value of the external ghost state (as well as the actual
external state). We can use has ext assertions in the pre- and postcondition of
an external function to describe how that function affects the external state. For
instance, we might give a console write function the “consuming-style” specifica-
tion {has ext(write(v); ; k)} write(v) {has ext(k)}, stating that if before calling
write(v) the program has permission to write the value v and then do the opera-
tions in k, then after the call it is left with permission to do k. (We could reverse
the pre- and postcondition for a “trace-style” specification, in which the external
state records the history of operations performed by the program instead of the
future operations allowed.) In this paper, we use interaction trees [13] as a means
of describing a collection of allowed traces of external events. Interaction trees
can be thought of as “abstract traces with binding”; for instance, we can write
x ← read; ; write (x + 1); ; k x to mean “read a value, call it x, write the value
x+ 1, and then continue to do the actions in k using the same value of x.”

In the end, we have a new assertion has ext on external state that works in
exactly the way we expect: it can hold external state of any type, it cannot be
modified by user code, it can be freely modified by external calls, it always has
exactly the same value as the external state already present in VST’s semantics,
and it exposes no ghost-state functionality to the user. If the user wants more
fine-grained control over external state (for instance, to split it into pieces so
multiple threads can make concurrent calls to external functions), they can define
their own ghost algebra for the state and pass around part elements explicitly,
but for the common case, has ext provides seamless separation-logic reasoning
about C programs that interact with an external environment.

4 Verifying C Programs with I/O in VST

Once we have separation logic specifications for external function calls, verifying
a communicating program is no different from verifying any other program. We
demonstrate this with the example program excerpted in Figure 1, shown in
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{ITree(write list(decimal rep′(i)); ; k)}

void print intr(unsigned int i) {
unsigned int q,r;
if (i!=0) {

q=i/10u;
r=i%10u;
print intr(q);
putchar(r+’0’);
}
}

{ITree(k)}

{ITree(write list(decimal rep(i)); ; k)}

void print int(unsigned int i) {
if (i==0)

putchar(’0’);
else print intr(i);
}

{ITree(k)}

{ITree(c← read; ; main loop(0, c))}

int main(void) {
unsigned int n, d; char c;

n=0;
c=getchar();
while (n<1000) {

d = ((unsigned)c)-
(unsigned)’0’;

if (d>=10) break;
n+=d;
print int(n);
putchar(’\n’);
c=getchar();
}
return 0;
}

{ITree(done)}

Fig. 4: A simple communicating program, with specifications for each function

full in Figure 4. The print intr function uses external calls to putchar to print
the decimal representation of its argument, as long as that argument is nonzero;
print int handles the zero case as well. The main function repeatedly reads in
digits using getchar and then prints the running total of the digits read so far.
The ITree predicate is simply a wrapper around the has ext predicate of the
previous section (i.e., an assertion on the external ghost state), specialized to
interaction trees on I/O operations. We can then write simple specifications for
getchar and putchar, using interaction trees to represent external state:

{ITree(r ← read; ; k r)} x = getchar() {ITree(k x)}
{ITree(write(x); ; k)} putchar(x) {ITree(k)}

Next, we annotate each function with separation logic pre- and postcon-
ditions; the program does not manipulate memory, so the specifications only
describe the I/O behavior of each function. The effect of print intr is to make a
series of calls to putchar, printing the digits of the argument i as computed by
the meta-level function decimal rep′ (where write list([i0; i1; ...; in]) is an abbre-
viation for the series of outputs write(i0); ; write(i1); ; ...; ; write(in)). When the
value of i is 0, print intr assumes that the number has been completely printed,
so print int adds a special case for 0 as the initial input. The specification for
the main loop is a recursive sequence of read and write operations, taking the



Connecting Higher-Order Separation Logic to a First-Order Outside World 11

running total (which starts at 0) and the most recent input as arguments:

main loop(n, d) , if n < 1000

then write list(decimal rep(n+ d)); ; c← read; ; main loop(n+ d, c) else done

Using the specifications for putchar and getchar as axioms, we can easily prove
the specifications of print intr, print int, and main. (The following sections show
how we substantiate these axioms.)

{ITree(`← read list(n); ; k `) ∗ buf 7→ }
x = getchars(buf , n)
{∃vs. length(vs) = n ∧ x = n ∧ ITree(k vs) ∗ buf 7→ vs}

{length(vs) = n ∧ ITree(write list(vs); ; k) ∗ buf 7→ vs}
putchars(buf , n)
{ITree(k) ∗ buf 7→ vs}

Fig. 5: Separation logic specifications for I/O calls with memory

More complicated programs may manipulate memory as well as communicat-
ing, and we can easily combine the two. For instance, if we want to read or write
several characters in a single call, the standard C idiom is to pass a buffer in
memory as an argument. Figure 5 shows the specifications for functions putchars
and getchars in this style, where each function takes as arguments a buffer to
hold the input/output and a number indicating the size of the buffer7. The pre-
and postconditions of these functions now involve both the external state and
a standard points-to assertion for the buffer. (Note that ` ← read list(n) is an
abbreviation for the series of inputs `0 ← read; ; `1 ← read; ; ...; ; `n−1 ← read.)

Figures 6 and 7 show a variant of the previous program that uses these exter-
nal functions with memory. The print intr function now populates a buffer with
the characters to be written and returns the length of the decimal representation
of its argument (retval in the postcondition refers to the return value of the func-
tion), while print int makes a single call to putchars with the populated buffer.
The main function now reads four characters at a time and then processes them
one by one, ultimately producing the same output as the previous program. The
specifications for putchars and getchars describe changes to both external state
and memory, as shown in Figure 5. Proving the specifications for the functions in
this program is not any more difficult than in the memoryless case: we define an
interaction tree main loop capturing the slightly different pattern of interaction
in this program, and then apply the appropriate separation logic rule to each
command. The external calls affect both memory and the ITree predicate, while
all other commands affect only memory and local variables, as usual.

7 While these are not standard POSIX I/O functions, they are close to the behavior
of POSIX read/write, socket operations, and other common forms of I/O.
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{length(decimal rep′(i)) ≤ length(contents) ∧
buf 7→ contents}

int print intr(unsigned int i,
unsigned char *buf) {

unsigned int q;
unsigned char r;
int k = 1;
if (i!=0) {

q=i/10u;
r=i%10u;
k = print intr(q, buf);
buf[k] = r+’0’;
}
return k + 1;
}

{buf 7→ contents[0...(retval− 1) :=

decimal rep′(i)]}

{ITree(write list(decimal rep(i)); ; k)}

void print int(unsigned int i) {
unsigned char *buf = malloc(5);
if (!buf) exit(1);
int k;
if (i==0){

buf[0] = ’0’;
buf[1] = ’\n’;
k = 2;
}
else{

k = print intr(i, buf);
buf[k] = ’\n’;
k++;
}
putchars(buf, k);
free(buf);
}

{ITree(k)}

Fig. 6: A communicating program with memory (part 1)

5 Soundness of External-State Reasoning

The soundness proof of VST [1] describes the guarantees that the Hoare-logic
proof of correctness for a C program provides about the actual execution of that
program. A C program P is represented as a list P1, ..., Pn of function definitions
in CompCert Clight, a Coq representation of the abstract syntax of C. The
program is annotated with a collection of function specifications (i.e., separation
logic pre- and postconditions) Γ = Γ1, ..., Γn, one for each function. We then
prove that each Pi satisfies its specification Γi, which we write as Γ ` Pi : Γi

(note that each function may call on the specification of any function, including
itself). The soundness theorem of VST without external function calls is then:

Theorem 1 (VST Soundness). Let P be a program with specification Γ .
Suppose for every function Pi there is a proof Γ ` Pi : Γi that Pi satisfies
its specification. Then the main function of P can run according to the Comp-
Cert Clight semantics for any number of steps without getting stuck, and if it
terminates then it does so in a state that satisfies its postcondition.

Proof. First, make a nonstandard, ownership-annotated, resource-annotated, step-
indexed small-step semantics for Clight. Define Verifiable C’s Hoare triple as a
shallowly embedded statement about safe executions in this “juicy” semantics.
Then show that executions in the juicy semantics erase to corresponding safe
executions in Clight’s standard “dry” small-step semantics.
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{ITree(cs ← read list(4); ; main loop′(0, cs))}

int main(void) {
unsigned int n, d; unsigned char c;
unsigned char *buf;
int i, j;

n=0;
buf = malloc(4);
if (!buf) exit(1);
i = getchars(buf, 4);
while (n<1000) {
for(j = 0; j < i; j++){

c = buf[j];
d = ((unsigned)c)-(unsigned)’0’;
if (d>=10) { free(buf); return 0; }
n+=d;
print int(n);
}
i = getchars(buf, 4);
}
free(buf);
return 0;
}

{ITree(done)}

Fig. 7: A communicating program with memory (part 2)

Corollary 1. Since null pointer dereferences, integer overflows, etc. are all
stuck in CompCert’s small-step semantics, this means that a verified program
will be free of all of these kinds of errors.

This soundness theorem expresses the relationship between the juicy seman-
tics described by VST’s separation logic and the dry semantics under which
C programs actually execute8. The proof of correctness of a program gives us
enough information to construct a corresponding dry execution for each juicy
execution9. However, we may not have access to the code of external functions,
and in some cases (e.g., system calls) they may not even be implemented in C. In
this section, we generalize the soundness theorem to include external functions.

8 Of course, a C program actually executes by running machine code, but the relation-
ship between the dry C semantics and the semantics of assembly language is already
proved in CompCert, as is assembly-to-machine language [20].

9 Theorem 1 blurs the line between juicy and dry by saying that a dry execution
“terminates in a state that satisfies its postcondition”, where the postcondition is
stated in separation logic. In the original proof of soundness [1], this is resolved by
assuming that the postcondition of main is always true. The techniques we use in
this section can also be applied to more refined specifications of main.
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In order to prove correctness of a C program with external calls in our sepa-
ration logic, we must have a pre- and postcondition Γi for each external function.
At this level these specifications are taken as axioms, since we do not have access
to the code of the external functions. To be able to describe the dry executions
of programs that call these functions, we also need simpler specifications on dry
states. Each dry external specification contains a pre- and postcondition for the
function, which may refer to the memory state, arguments/return values, the
external state, and a witness used to provide logical parameters to the pre- and
postcondition. The core of our approach is to prove the correspondence between
the juicy specification and the dry specification of each external function.

If we can relate every juicy specification to a dry specification, then why
bother with the juicy specifications at all? The answer is, not every function
can be specified “dry.” Higher-order functions in object-oriented patterns, dy-
namically created locks with self-referential resource invariants, and many other
C programming patterns cannot be given simple first-order specifications. But
the external functions that correspond to ordinary input/output can be given
first-order specifications. Therefore, users can write higher-order object-oriented
programs, in which the internal functions have (only) juicy specifications, so long
as the external functions have (also) dry specifications. For instance, consider
the specification of the putchars function from the previous section:

{length(vs) = n ∧ ITree(write list(vs); ; k) ∗ buf 7→ vs} putchars(buf , n)

{ITree(k) ∗ buf 7→ vs}

The pre- and postcondition each make one assertion about memory (that the
buffer buf points to the string of bytes vs) and one assertion about the external
state10 (that the interaction tree allows write list(vs) followed by k before the
call, and k afterward). The corresponding first-order specification on dry memory
and external state is:

Pre((vs, k), (buf , n),m, z) , length(vs) = n ∧ z = (write list(vs); ; k) ∧
∀i < n. m(buf + i) = vs[i]

Post((vs, k), (buf , n),m0,m, z) , m0 = m ∧ z = k

where (vs, k) is the witness (i.e., the parameters to the specification), buf and
n are the arguments passed to the function, m is the current memory, z is
the external state, and m0 in the postcondition is the memory before the call
(allowing us to state that memory is unchanged). Of the roughly 210 Linux
system calls that are not Linux- or platform-specific, about 140 fall into this
pattern, including socket, console, and file I/O, memory allocation, or are simpler
informational calls like gethostname that do not involve memory.

Once we have a juicy and a dry specification for a given external function,
what is the relationship between them? Intuitively, if the juicy specification for a
function f is {Pj} f(args); {Qj}, the Hoare logic proof for a program that calls

10 ITree is actually an assertion on the external ghost state, which is connected to the
true external state as described in Section 3, and is erased at the dry level.
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f guarantees that Pj is satisfied before every call to f , and relies on Qj holding
after each such call returns. To know that the program will run without getting
stuck, on the other hand, we must know that the dry precondition Pd is satisfied
before each call, and we can assume that the dry postcondition Qd is satisfied
after each return. So informally, we need to know that Pj implies Pd and that
Qd implies Qj . This cannot be a simple logical implication, however, because
Pj and Qj are predicates on juicy memories, while Pd and Qd are predicates on
dry memories. A juicy memory jm is a dependent triple (m,φ, pf ), where m is
a dry memory, φ is a higher-order, step-indexed memory with ghost state, and
pf is a proof of the relationship between m and φ. We can easily extract the dry
memory m from a juicy memory (we write this as dry(jm)), but there are many
possible φ’s that may correspond to a single m: we need to make decisions about
ownership information and ghost state that is not present at the CompCert level.

In order to relate the juicy and dry specifications, we must erase the juice from
the precondition, Pj ⇒ Pd, and then reconstruct the juice in the postcondition,
Qd ⇒ Qj . The key to this erasure is that, as explained above, the Pj and Qj for
external functions generally make only first-order assertions on memory (memory
buffers passed to system calls don’t contain higher-order objects such as function
pointers and locks). The rest of the memory is implicitly the frame, and will not
be changed by the external call. For first-order predicates, erasure is injective,
and the associated juicy memory can be uniquely reconstructed once the buffer
has been modified. The frame can contain noninjective juice, but we can reuse
the same juice in going from Qd ⇒ Qj that we erased in going from Pj ⇒ Pd,
since the external function does not modify the frame. In practice, the story is
not quite so simple: the external function might allocate or free memory, the dry
witness (used in Pd and Qd) must be derived from the juicy witness (used in Pj

and Qj), and so on. We now formalize the details, culminating in Definition 6,
the formal correspondence between juicy and dry specifications.

First, we address the problem of reconstructing a juicy memory from a dry
memory. While there are many juicy memories that correspond to a given Comp-
Cert memory, it is easy to start with a (precondition) juicy memory and change it
to reflect (postcondition) modifications to the associated dry memory, as long as
those changes fall within certain limits. In particular, a memory location may be
newly allocated or deallocated, or its value may be changed while staying at the
same permission level, but its permissions should not otherwise be changed11. If
a dry specification ensures that memory is changed in only (at most) these ways,
we say that it safely evolves memory. When a user adds a new set of external
functions to VST, this safe evolution property will be one of their proof obliga-
tions. As long as an external function satisfies a specification that safely evolves
memory, we can always reconstruct the juicy memory after the call by modify-
ing the original juicy memory to reflect the changes to the dry memory. This

11 Any function that interacts with memory through the standard interface of load,
store, alloc, and free will fall within these limits; concurrency operations, such as
acquiring or releasing a lock, may not, and proving that lock operations are correctly
implemented is outside the scope of this work.
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reconstruction captures the effects of the external call on the program’s memory;
to reflect the changes to the external state, we must also set the external ghost
state of the reconstructed juicy memory to match the external state returned
by the call. We define a reconstruct operation such that reconstruct(jm,m, z) is
a version of the juicy memory jm that has been modified to take into account
the changes in the dry memory m and the external state z.

Second, we need a way to transform a juicy witness into the corresponding
dry witness. When a user adds a new external call to VST, they must provide a
dessicate function that performs this transformation. Fortunately, the dessicate
operation usually follows a simple pattern. Components of the witness that are
not memory objects are generally identical in their juicy and dry versions. The
frame is usually the only memory object in the juicy witness; while it is possible in
VST to write a Hoare triple that quantifies over other memory objects explicitly,
it is very unusual and runs counter to the spirit of separation logic. Similarly, the
postcondition of the dry specification may refer to the memory state before the
call (to express properties such as “this call stored value v at location `”), but
there is rarely a reason to refer to any other memory object. Thus, the dessicate
operation for each function can simply discard the frame (juicy) memory and
replace it with the dry memory from before the call. This standard dessicate
operation works for all external functions shown in this paper.

This leads to the following definition and theorem:

Definition 6 (Juicy-Dry Correspondence). A juicy specification (Pj , Qj)
and a dry specification (Pd, Qd) for an external function correspond if, for a
suitable dessicate operation:

– for all witnesses w, arguments a, external states z, and juicy memories jm,
if Pj(w, a, z, jm), then Pd(dessicate(jm, w), a, z, dry(jm)); and

– for all witnesses w, arguments a, return values r, external states z, ini-
tial juicy memories jm0, initial external states z0, and dry memories m, if
Pd(dessicate(jm0, w), a, z0, dry(jm0)) and Qd(dessicate(jm0, w), r, z,m), then
Qj(w, r, z, reconstruct(jm0,m, z)).

Theorem 2 (VST Soundness with External Functions). Let P be a pro-
gram with n functions, calling also upon m external functions. The internal
functions have (juicy) specifications Γ1 . . . Γn and the external functions have
(juicy) specifications Γn+1 . . . Γn+m. Suppose P is proved correct in Verifiable
C—there is a derivation Γ ` P1 : Γ1, . . . , Pn : Γn. Let Dn+1, . . . , Dn+m be dry
specifications that safely evolve memory, and that correspond to Γn+1 . . . Γn+m.
Then the main function of P can run according to the CompCert C semantics,
using D as the semantics of external function calls, for any number of steps
without getting stuck, and if it terminates then it satisfies its postcondition.

Proof. We extend the juicy semantics of Theorem 1 with a rule for external
calls that uses their juicy pre- and postconditions, and then prove that execu-
tions in this semantics erase to safe executions in the dry semantics, using the
correspondence to relate juicy and dry behaviors of external calls.



Connecting Higher-Order Separation Logic to a First-Order Outside World 17

Although this theorem does not explicitly mention external communication,
it implies that any I/O operations performed by P conform to the description of
allowed communication in the specification of main. This follows from the fact
that only external calls can change the external state, and only external calls can
communicate with the outside world. Thus, if P performs a sequence of external
function calls f1, ..., fn, the external communication performed by P must be
consistent with the specifications Df1 , ..., Dfn . In the case of the examples above,
this means that at any point in a program’s execution, its communication so far
will be a prefix of the operations allowed by the initial ITree predicate, as desired.

Proving the correspondence between the juicy and dry specifications is the
primary proof burden for a VST user who wants to use a new external function
in their program. Fortunately, this proof only needs to be done once per external
function rather than once per program (as long as the original specification is
general enough to be usable in many different programs), and soundness (Theo-
rem 2) has been proved once and for all. As a result, a VST user can prove that
their program with external calls runs correctly as follows:

1. For each external function used in the program (that has not already been
specified in VST), write a separation logic specification for that function.

2. Prove correctness of the program in VST as usual using the separation-logic-
level external specifications.

3. For each external function used in the program (again, that has not already
been specified), write a dry specification describing its effects on CompCert
memories, and prove that the dry specification corresponds to the juicy spec-
ification and safely evolves memory.

4. Show immediately that the program runs correctly for any number of steps
by applying Theorem 2.

For instance, we have already seen the VST-level specifications for putchars
and getchars, and used them to prove correctness of a simple program; we can
complete the process with the following lemma.

Lemma 1. The juicy specifications of putchars and getchars correspond to their
dry specifications.

As a result, we now know that the sample program in Figure 7 runs correctly for
any implementation of putchars and getchars that satisfy their dry specifications.

6 Connecting VST to CertiKOS

In the previous section, we showed how to connect a step-indexed separation logic
specification of an external function to a “dry” specification on non-step-indexed
CompCert memories and external state. This gives us a correctness property for
C programs with external functions, but it still treats the dry specifications of
the external functions as axioms. In this section, we show how to discharge these
axioms by connecting dry specifications to implementations of the corresponding
functions in the verified operating system CertiKOS [7].
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Definition serial_in (port : Z) (st : OSState) : OSState * Z :=

... (* read buffers, compare bits, etc *)

let new := st.(serial_oracle) st.(serial_trace) in

match new with

| SerialRecv data ⇒
let (st’, byte) := ... in (* manipulate data *)

(st’/[serial_trace := st.(serial_trace) ++ [new]], byte)

| ... (* handle other events *) end.

Fig. 8: A specification of a serial driver

6.1 CertiKOS Specifications

In order to explain how to connect VST and CertiKOS specifications, we first
summarize how their specification styles differ. In VST, a specification is a pre-
and postcondition on the (step-indexed, ghost-state-augmented) memory state
of a program. In CertiKOS, a specification is a function representing a state
transition from the current OS state to a new one with an (optional) return value.
The OS state is a record with fields for each piece of concrete or logical state that
CertiKOS maintains, such as page table maps and console buffers. Specifications
are organized into “Certified Abstraction Layers” [6], which can be independently
proven to refine higher-level abstractions, and then composed with other layers
to build more complex systems. The concrete CertiKOS kernel implementation,
in C and assembly, is verified with respect to high-level specifications using this
layer framework and the CompCert compiler.

Because the specifications are pure, deterministic functions, something more
is needed to model functions with externally visible effects such as I/O. To
handle such functions, CertiKOS parameterizes specifications by “environment
contexts” [8], which act as oracles that take a log of the events up to that point
and return the next steps taken by the environment. Each oracle has a fixed set
of events it can produce, along with a trace well-formedness invariant that it
must preserve. For example, the oracle for modeling the behavior of the serial
device can return events indicating the successful completion of a send or the
arrival of some data, and it is assumed to only receive values that fit in a byte
([0, 255]). Although any particular choice of oracle is a deterministic function, its
implementation is completely opaque to the specification, so that proofs about
the specification’s behavior hold given any oracle and environment state.

As a concrete example, consider the abridged specification of part of the
serial driver in CertiKOS (Figure 8). After some initial work, the specification
needs to know what bits came in from the physical device, so it consults the
oracle and branches based on the next serial event. If the next event is a receive,
it manipulates the received data to extract a byte and returns it along with a
new state in which the trace is updated to include the processed event.
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6.2 Relating OS and User State

Definition serial_putc (c : Z) (st : OSState) : option (OSState * Z) :=

let c’ := c mod 256 in

if st.(ikern) && st.(init) && st.(ihost) then

if st.(drv_serial).(serial_exists) then

match st.(com1) with

| mkDevData (mkSerialState _ true _ _ txbuf nil false) _ ltx _ ⇒
let cs := if c’ =? CHAR_LF then [CHAR_LF;CHAR_CR] else [c’] in

Some (st/[com1/s/TxBuf := cs,

serial_log := st.(serial_log) ++ [IOEvPutc c]], c’)

| _ ⇒ None end

else Some (st, -1)
else None.

Pre(k, c,m, z) , (write(c); ; k) v z

Post(k, c,m0,m, z) , m0 = m ∧ z v k

Fig. 9: The core of the putchar system call vs. its dry specification

User-level programs cannot directly interact with the outside environment,
and must instead communicate through the OS using the system call interface
it provides. System calls in CertiKOS are specified just like any other operation,
i.e., as a state transition function. For each system call, we would like to relate its
dry pre- and postcondition (as described in Section 5) to its functional specifica-
tion in CertiKOS. The property we would like to prove is something like: for any
initial state s, if the dry precondition holds for s, then the value v and state s′

returned by the functional specification satisfy the dry postcondition. Combined
with the correspondence between juicy and dry specifications, this implies that
the system call specification correctly implements the behavior expected by the
user program (as expressed by its separation logic specification in VST). How-
ever, this property cannot be proven in its current form because the dry pre-
and postconditions are predicates on CompCert memories and external state,
which differ from CertiKOS’s state, much of which is invisible and irrelevant
to the user program, as can be seen in Figure 9. Instead, we must restate the
correctness property in terms of relations between the common elements of the
two state representations. The key components to relate are the return value of
the system call, the representation of the user program’s memory, and the model
of external behaviors. The return value is a CompCert value in both systems,
but the other two require additional work to translate between them.

Although, like VST, the CertiKOS kernel uses the CompCert C semantics
and memory model, user-process memory is represented as a flat physical ad-
dress space rather than a set of disjoint blocks. The OS state also includes page
tables to map virtual to physical addresses and a record of which addresses are
allocated. Fortunately, aside from these differences, the flat memory model is
quite similar to CompCert’s (see Figure 10). We assume the existence of a re-
lation Rmem that maps blocks to virtual addresses. Other than the restriction
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Inductive flatmem_val :=

| HUndef

| HByte: byte → flatmem_val.

(* Map from address to value *)

Definition flatmem :=

ZMap.t flatmem_val.

Inductive memval :=

| Undef: memval

| Byte: byte → memval

| Pointer: block → int → nat → memval.

(* Map from block and offset to value *)

Record mem := mkmem {

mem_contents: PMap.t (ZMap.t memval);

... }.

Fig. 10: A comparison of CertiKOS flat memory and CompCert memory

that blocks fit in the virtual address space and map to nonoverlapping regions,
the exact mapping has no effect on the system call correctness, so it can be com-
pletely arbitrary. To relate a CompCert memory to a CertiKOS one, we define
a relation inj(m, flat(s), ptbl(s)), which states that if a block and offset in the
CompCert memory m is valid, then it contains the same data as the correspond-
ing location (according to Rmem and the page table) in the flat memory of the
OS state s. Note that inj is parameterized by the page table to allow a system
call to alter the address mapping, for example by allocating new memory.

At the user level, the precondition contains an interaction tree (or similar
external specification) that specifies the allowed external behaviors, and the
postcondition contains a smaller tree that continues using the return value of
the “consumed” actions. On the other hand, in CertiKOS, specifications begin
with a trace of the events that have already happened and extend it with new
events by querying the external environment. To reconcile these two views, we
can first relate an interaction tree to a (possibly infinite) set of (possibly infinitely
long) traces, each of which intuitively is the result of following one path in the
tree. Then any trace allowed by the output interaction tree should be a suffix of
a trace allowed by the input tree, and the difference between the two should be
exactly the trace of events generated during the system call:

Definition 7. We write consume(T , T ′, tr) to mean that, if tr ′ is a trace of T ′,
then tr ++ tr ′ (concatenation of tr and tr ′) is a trace of T .

Equipped with the relations defined above, we can define more precisely what
it means for a system call to satisfy its dry specification.

Definition 8 (Dry-Syscall Correspondence). A system call f with func-
tional specification Of correctly implements a dry specification (Pd, Qd) if for
any arguments ~v, CompCert memory m, interaction tree T , and OS state s, if
Pd(~v,m, T ), inj(m, flat(s), ptbl(s)), and Of (~v, s) = (s′, v′, tnew), then for all m′

such that inj(m′, flat(s′), ptbl(s′)), there exists T ′ such that consume(T , T ′, tnew),
and Qd(~v, v′,m′, T ′).

That is, if f correctly implements a dry specification then for any state that
satisfies the dry precondition Pd, we can inject the relevant piece of memory
into an OS state s, apply the functional specification Of , and then extract a
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resulting state that satisfies the dry postcondition Qd. The inj relation may
relate multiple CompCert memories to a given OS state (hence the universal
quantification over the resulting memory m′), but all such memories must agree
on the contents of all valid addresses, so the postcondition will usually hold for
all m′ if it holds for any m′.

Theorem 3. Putchar and getchar in CertiKOS correctly implement their dry
specifications.

While this correspondence is specific to CertiKOS, we can adapt it to other
verified operating systems by replacing the CertiKOS system call specification,
user memory model, and external event representation with those of the other
OS. For example, in the case of the seL4 microkernel [12], inj could be redefined to
relate a CompCert memory to certain capability slots that represent the virtual
memory, and the system call might send a message to a device driver running
in another process. Despite these changes, most of the theorems in this paper
aside from Theorem 3 would continue to hold with minor or no alterations.

6.3 Soundness of VST + CertiKOS

In Section 5, we described a correspondence between “juicy” separation logic
specifications for external functions and “dry” CompCert-level specifications
that is sufficient to guarantee that verified C programs behave correctly when
run, as long as the external functions actually satisfy their dry specifications.
Now we have seen how to prove that an external function satisfies its dry specifi-
cation, by relating it to its CertiKOS specification. We combine these two proofs
to get a stronger correctness property for programs that use CertiKOS system
calls. This will also allow us to formalize the idea that at each point in a pro-
gram’s execution, it has performed some prefix of the communication operations
specified in its precondition.

First, we define the semantics of programs with respect to the implementation
of external functions:

Definition 9 (OS Safety). Suppose that we have a set of external calls F
such that each f ∈ F has a functional specification Of . Then a configura-
tion (c,m, t, T ), where c is a C program state, m is a memory, t is a trace
of events performed so far, and T is an interaction tree specifying the allowed
future events, is safe for n steps with respect to a set of traces T if:

– n is 0 and T is {ε}, or
– (c,m) → (c′,m′) and (c′,m′, t, T ) is safe for n − 1 steps with respect to T ,

or
– c is at a call to an external function f with arguments ~v, and for all s con-

sistent with t such that inj(m, flat(s), ptbl(s)), if Of (~v, s) = (s′, v′, tnew), then
there is some new interaction tree T ′ such that (c′,m′, t++ tnew, T ′) is safe
for n− 1 steps with respect to T ′, where c′ is the program state after the call
(using the return value v′), inj(m′, flat(s′), ptbl(s′)), and consume(T , T ′, tnew),
and T is the union of {tnew ++ t′ | t′ ∈ T ′} for all such T ′.
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The C program has states (c,m), where c holds the values of local variables
and the control stack, and m is the memory. Our small-step relation (c,m) →
(c′,m′) characterizes internal C execution, and therefore if c is at a call to an
external function then (c,m) 6→ (c′,m′). The operating system has states s that
contain the physical memory flat(s) and many other components used internally
by the OS (and its proof of correctness), including a trace of past events; we say
that s is consistent with t when the trace in s is exactly t.

Definition 9 has several important differences from our original definition of
safety in Section 2. First, configurations include the trace t of events performed
so far, as well as T , the high-level specification of the allowed communication
events (here it is taken to be an interaction tree, but it could easily be defined
in another formalism just by changing the definition of consume). Second, our
external functions are not simply axiomatized with pre- and postconditions,
but implemented by the executable specifications Of provided by the operating
system. We use the ideas of the previous section to relate the execution of C
programs to the behavior of system calls: we inject the user memory into the OS
state, extract the resulting memory from the resulting state, and require that the
new interaction tree T ′ reflect the communication events tnew performed by the
call. Note the quantification over the current OS state s: the details of the OS
state, such as the buffer of values received, are unknown to the C program (and
may change arbitrarily between steps, for instance, if an interrupt occurs), and
so it must be safe under all possible OS states consistent with the events t. The
set T contains all possible communication traces from the program’s execution,
so by proving that every trace in T is allowed by the initial interaction tree T ,
we show that the program’s communication is always constrained by T .

Lemma 2 (Trace Correctness). If (c,m, T ) is safe for n steps with respect
to T , then for all traces t ∈ T , there exists some interaction tree T ′ such that
consume(T , T ′, t).

Proof. By induction on n. Since the consume relation holds for the trace segment
produced by each external call, it suffices to show that it is transitive, i.e., that
consume(a, b, t1) and consume(b, c, t2) imply consume(a, c, t1 ++ t2).

Theorem 4 (Soundness of VST + CertiKOS). Let P be a program with
n functions, calling also upon m external functions. The internal functions have
(juicy) specifications Γ1 . . . Γn and the external functions have (juicy) specifi-
cations Γn+1 . . . Γn+m. Suppose P is proved correct in Verifiable C with initial
interaction tree T . Let Dn+1, . . . , Dn+m be dry specifications that safely evolve
memory, and that correspond to Γn+1 . . . Γn+m. Further, let each Di be correctly
implemented by an OS function fi with executable specification Ofi . Then for all
n, the main function of P is safe for n steps with respect to some set of traces
T , and for every trace t ∈ T , there exists some interaction tree T ′ such that
consume(T , T ′, t).

Proof. By the combination of the soundness of VST with external functions
(Theorem 2), Lemma 2, and a proof relating our previous definition of safety to
the new definition.
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This is our main result: by combining the results of the previous sections, we
obtain a soundness theorem down to the operating system’s implementation of
system calls, one that guarantees that the actual communication operations per-
formed by the program are always a prefix of the initial specification of allowed
operations. By instantiating the theorem with a set of verified system calls, we
obtain a strong correctness result for our VST-verified programs, such as:

Theorem 5. Let P be a program that uses the putchar and getchar system calls
provided by CertiKOS, such as the one in Figure 4. Suppose P is proved correct
with initial interaction tree T . Then for all n, the main function of P is safe
for n steps with respect to some set of traces T , and for every trace t ∈ T , there
exists some interaction tree T ′ such that consume(T , T ′, t).

7 From syscall-level to hardware-level interactions

Thus far, we have assumed that the events in a program’s trace are exactly
the events described in the user-level interaction tree T . In practice, however,
the communication performed by the OS may differ from that observed by the
user. For example, like all operating systems, CertiKOS uses a kernel buffer of
finite size to store characters received from the serial device; if the buffer is
full, incoming characters are discarded without being read. To represent this
distinction, we distinguish between the user-visible events produced by system
calls, and external events, which are generated by the environment oracle and
recorded in the trace at the time that they occur. For the system call events
to be meaningful, they must correspond in some way to the external events,
but this correspondence may not be one-to-one. In the case of console I/O, each
character received by the serial device should be returned by getchar at most
once, and in the order they arrived, but characters may be dropped. This leads us
to the condition that the user events should be a subsequence of the environment
events, which is proved in CertiKOS.

Lemma 3. The getchar system call maintains the invariant that there exists an
injective map from a system call event with value v in the OS trace to an external
event with value v earlier in the trace.

Corollary 2. Let P be a verified program as described in Theorem 4, in which
getchar is the only system call performed. Then for all n, the main function of
P is safe for n steps with respect to some set of traces T , and for every trace
t ∈ T , there exists some interaction tree T ′ such that consume(T , T ′, t), and the
events in t correspond to external events performed as described in Lemma 3.

Unlike Theorem 4, this corollary is specific to a particular system call, but it
gives a stronger correctness property: the events in the user-level interaction tree
are now interpreted in terms of actual bytes received by the OS, in the form of
external events. Note that Lemma 3 does not require that every external event
has a corresponding system call event; if the buffer fills up and characters are
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dropped before a getchar call, then there will be external events that do not cor-
respond to anything in the interaction tree, and this is the intended semantics of
buffered communication without flow control. A similar corollary can be proved
for any set of system calls, but the precise correspondence between user events
and external events will depend on the particular system calls involved.

There is one more soundness theorem we might want to prove, asserting
that the combined system of program and operating system executes correctly
according to the assembly-level semantics of the OS. We should be able to obtain
this theorem by connecting Theorem 4 with the soundness theorem of CertiKOS,
which guarantees that the behavior of the operating system running a program
P refines the behavior of a system K ./ P consisting of the program along
with an abstract model of the operating system. However, this connection is
far from trivial: it involves lowering our soundness result from C to assembly
(using the correctness theorem of CompCert), modeling the switch from user to
kernel mode (including the semantics of the trap instruction), and considering
the effects of other OS features on program behavior (e.g., context switching). We
estimate that we have covered more than half of the distance between VST and
CertiKOS with our current result, but there is still work to be done to complete
the connection. We can now remove the OS’s implementation of each system call
from the trusted computing base; it remains to remove the OS entirely.

8 Related Work

The most comprehensive prior work connecting verified programs to the imple-
mentation of I/O operations is that of Férée et al. [5] in CakeML, a functional
language with I/O connected to a verified compiler and verified hardware. As in
our approach, the language is parameterized by functional specifications for ex-
ternal functions, backed by proofs at a lower level. However, while CakeML does
support a separation logic [9], it is not higher-order, so all of the components are
specified in the same basic style. Our approach could enable higher-order sepa-
ration logic reasoning about CakeML programs. Ironclad Apps [10] also includes
verified communicating code, for user-level networking applications running on
the Verve operating system [21]. However, their network stack is implemented
outside of the operating system, so proofs about I/O operations are carried out
within the same framework as the programs that use the operations.

One major category of system calls is file I/O operations. The FSCQ file
system [2] is verified using Crash Hoare Logic, a separation logic which accounts
for possible crashes at any point in a program. File system assertions are similar
to the ordinary points-to assertions of separation logic, but may persist through
crashes while memory is reset. In Crash Hoare Logic, the implementation-level
model of the file state is the same as the user’s model, and the approach does
not obviously generalize to other forms of external communication.

Another related area is the extension of separation logic to distributed sys-
tems, which necessarily involves reasoning about communication with external
entities. The most closely related such logic is Aneris [14], which is built on
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Iris, the inspiration for VST’s approach to ghost state. The adequacy theorem
of Aneris proves the connection between higher-order separation logic specifica-
tions of socket operations and a language that includes first-order operational
semantics for those functions. In our approach, this would correspond to directly
adding the “dry” specifications for each operation to the language semantics, and
building the correspondence proof for those particular operations into the sound-
ness theorem of the logic; our more generic style of soundness theorem would
make it easier to plug in new external calls. The bottom half of our approach—
showing that the language-level semantics of the operations are implemented by
an OS such as CertiKOS—could be applied to Aneris more or less as is. Another
interesting feature of Aneris is that the communication allowed on each socket
is specified by a user-provided protocol, an arbitrary separation logic predicate
on messages and resources. In our examples thus far, we have assumed that the
external world does not share any notion of resource with the program, and
so our external state only mentions the messages to be sent and received; how-
ever, the construction of Section 3 does allow the external state to have arbitrary
ghost-state structure, which we could use to define similarly expressive protocols.

9 Conclusion and Future Work

We have now seen how to connect programs verified using higher-order separa-
tion logic to external functions provided by a first-order verified system, effec-
tively importing the results of outside verification (e.g. OS verification) into our
separation logic. The approach consists of two halves: we first relate separation
logic specifications for the external functions to “dry” first-order specifications
on CompCert memories [15] and interaction trees [13], and then relate these dry
specifications to the system that implements the functions (CertiKOS in our
example). In the process, we interpret the C-level communication constraints in
terms of OS-level events that more accurately represent the communication that
occurs in the real world. Our approach works for any type of external commu-
nication, and allows users to extend the system with new external functions as
needed. Each new correspondence proof for an external function modularly ex-
tends the soundness theorem of VST, removing the separation-logic specification
of the function from the trusted computing base.

The combination of CompCert memories with interaction trees has served
as a robust specification interface between two quite different approaches to
verification: VST’s higher-order impredicative concurrent separation logic, and
CertiKOS’s certified concurrent abstraction layers. This strongly suggests that
the combination of CompCert memories and interaction trees can serve as a
lingua franca to interface with other verification systems for client programs
and for operating systems.
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